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ABSTRACT
Coset-based codes are often proposed as an alternative to the theo-
retical probabilistic random binning in network coding. In this pa-
per nested lattice codes recently proposed for multiterminal binning
are used to devise a structured high dimensional Costa scheme for
data hiding. The resulting embedding scheme overcomes both the
famous Scalar Costa Scheme (SCS) and regular Quantization Index
Modulation (QIM). Performances are studied within the context of
a Modulo Lattice Additive Noise (MLAN) channel. We first show
that the gap to the full AWGN capacity can be partially bridged up
using some finite-dimension lattices with good packing properties.
Next we use a binning interpretation to argue that information em-
bedding can also be understood as a source-channel coding problem
and that nested lattices provide means of constructing efficient low
complexity, good source-channel codes. The resulting paradigm
connects information embedding to the two rich area of source
and channel coding and gives insights -through an example- into
the construction of fine/coarse lattices. For illustrations purposes,
Monte-Carlo integration-based capacity and simulation-based bit-
error rate (BER) curves are provided.

1. INTRODUCTION

Consider the channel �������
	��� , where � and � are the
channel input and output respectively, � is an unknown additive
noise and 	 is an interference known to the transmitter but not
the receiver. Coding for such a channel is commonly known as
”channel coding with state information available only at the trans-
mitter” and it dates back to Gel’fand and Pinsker [1] and Heegard
and El Gamal [2]. They showed that in case of a random state vector	���� S1 ��������� Sn � with independent and identically distributed (i.i.d)
components and when the encoder chooses the entire state vector
before choosing the channel input � , capacity writes

C � sup
p ����� ��� ���  I �"! ; � �$# I �"! ; 	 �&% � (1)

! is an auxiliary random variable (codebook) chosen so that!(')�"� � 	 � '*� form a Markov Chain and p �"+ �-,/. 0 � � δ 1 , #
f �"+ �"0 �32 p �-+ . 0 � . Costa, in his ”Writing on Dirty Paper” [3], adher-
ing to Gelfand-Pinsker setting [1], considered the special case of
Gaussian signals1 and showed that if 	 and � are statistically inde-
pendent Gaussian variables with 1

n 46587 � 2 9 � P and 1
n 46:
7 � 2 9 � N

, then the capacity (1) is given by

C � 1
2

log ; 1 � P
N < � (2)

Thus the effect of the interference 	 is canceled out completely, as
if either it were zero or it were available also at the receiver. The
proof is based on the random binning argument for general channels
with state information [1]. The idea of ”binning” is a key element in
the solutions of information network problems. A binning scheme
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1In the following, this situation is referred to as the ”Costa problem”

divides a set of codewords into random subsets or ”bins” in such
a way that the codewords in each subset are as far apart as pos-
sible. However, this probabilistic construction is convenient only
for theoretical analysis, not for practical applications. For these,
structured low-complexity codebooks have to be found. Recently,
in a watermarking context, Chen and Wornell [4] and Eggers and
al. [5] designed practical quantization-based schemes to achieve this
side-information capacity. These two sample-wise schemes are re-
ferred to as ”Quantization Index Modulation” (QIM) and ”Scalar
Costa Scheme” (SCS), respectively. Independently, in a unifying
framework, Zamir and al. [6] proposed nested linear/lattice codes
for algebraic coding schemes for symmetric/Gaussian multiterminal
communication networks. Nested lattice codes are obtained through
a layered lattice based construction: a fine lattice Λ1 together with
a coarse lattice Λ2, with Λ2 = Λ1. In this paper we first show
that nested lattices can readily be applied for high dimensional data
embedding and derive corresponding performances, illustrating the
achieved gain over scalar approaches SCS and QIM. Next we use a
binning interpretation to argue that lattice-based watermarking can
be understood as a source-channel coding problem and that nested
lattices provide a good framework for designing low complexity
good source-channel codes. We use the minimum distance criterion
for the selection of the fine code for high rate transmissions. The
use of the minimum-distance criterion is motivated by the fact that
at high Signal-to-Noise Ratio channel codes performances depend
almost only on their minimum-distance. Analysis is supported by
an illustrative example using a fine Reed Solomon code together
with Construction A [7]. Though non-optimal in a general setting,
our main contribution- at this stage- is that of showing that careful
design of joint source-channel codes enables reliable transmission
at relatively high transmission rates in Costa-based watermarking

The paper is organized as follows: Section 2 presents the for-
mal statement of the watermarking problem as coding with state
information available at the transmitter together with the nested en-
coding and decoding functions. Also, a short review of fundamen-
tal lattice properties is given. In section 3, analogy with Modulo
Lattice Additive Noise (MLAN) channel is stated and capacity is
derived accordingly. In section 4 a binning interpretation is given
and the watermarking problem is formulated as a source-channel
coding problem. Nested lattices are then used as a good framework
for theoretical analysis and the minimum-distance criterion is dis-
cussed together with an illustrative example. Finally we give some
concluding remarks in section 5.

2. NESTED LATTICES FOR COSTA-BASED
WATERMARKING

A lattice-based transmission diagram for the Costa problem (used
here for watermarking) is depicted in Fig. 1. All signals are Gaus-
sian. An index m >@? with ?A�CB 1 �������D� M E has to be sent to
a receiver in n uses of some channel denoted by the watermark
channel. m is encoded into a code vector , called the water-
mark which is added to the cover signal 0 >�F n to form the wa-
termarked or composite signal 0 � , . Here, M is the greatest in-
teger smaller than or equal to 2nR and R is the transmission rate.
We shall assume that the encoder and the decoder share common
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Figure 1: Nested coding scheme for watermarking. The coarse lat-
tice Λ2 should be a good source-code and the fine lattice Λ1 should
be a good channel code.

randomness, so that the key � is available to both of them. The
one-dimensional SCS is obtained with the particular case of an in-
teger lattice Λ ��� but with scaled signals 0 � � 0 � α , , � � , � α and� � � � � α . The inflating parameter α is chosen so as to maximize
the system performances (see below). Lattices are extensively stud-
ied in [7]. In this paper, only the required ingredients are briefly
reviewed. A lattice Λ of dimensionality n and with generator ma-
trix � is defined as Λ ��B�� � � : � >	� n E . The nearest neighbor
quantizer 
8� � � associated with Λ is defined by 
8� , � ��� > Λ if , # � ��� , # � � �� � � > Λ. The fundamental Voronoi cell of Λ
is �� Λ ��� B , : 
 � , � ���6E . The modulo operation consists in a
reduction modulo Λ:

� 0 > F n � 0 mod Λ � 0 # 
 Λ � 0 � >��� Λ � .
The pair of n-dimensional lattices (fine, Λ1, and coarse, Λ2) of

Fig. 1 is nested in the sense that each point of Λ2 is also a point of
Λ1, i.e., Λ2 = Λ1. Their corresponding generator matrices satisfy� 2 ��� 1 � � with det B � E�� 1. Also, the volumes V1 of � � Λ1 � and
V2 of �� Λ2 � are such that V2 � det B � E �V1. An important parameter
is the nesting ratio defined as µ � Λ1 � Λ2 � � n

�
V2
�
V1. The set of

points of Λ1 that are inside the Voronoi region of Λ2�
m � B Λ1modΛ2 E � B Λ1 � �8� Λ2 � E

forms the coset leaders of Λ2 relative to Λ1. For each  > � m,
Λ �"! �

2
�# /� Λ2 is a coset of Λ2 relative to Λ1. There are . � m . �$

V2
�
V1 % different cosets whose union gives the fine lattice Λ1,&

!('*) m

Λ �"! �
2
� Λ1 �

We may view these cosets as structured ”bins” of the random code-
book in [1]. To design a transmission scheme based on nested lat-
tices, let ι � � � a certain indexing function that arbitrarily associates
each message m > ? to a unique codeword  m � ι � m � > � m. Note
that this implies M

� . � m . , or equivalently that,

R
�

Rmax � 1
n

log2 � µ � Λ1 � Λ2 ��� � (3)

Nested encoding and decoding are performed according to, � 0 ;m � Λ1 � Λ2 � ���+ m �,� # α 0 � mod Λ2 � (4a)

ˆ m �.- ;m � Λ1 � Λ2 � �/
 Λ1
� α - # � � mod Λ2 � (4b)

Eq. (4a) means that the transmitted signal is the error quantiza-
tion between α 0 # � and the selected coset Λ �0! m �

2
. Eq. (4b) means

that the overall decoding is performed through successive (layered)
decoding: first, use the fine lattice Λ1 to find the quantizer represen-
tative 
 Λ1

� α - # � � of α - # � . Next, use the coarse lattice Λ2 to

quantize 
 Λ1
� α - # � � and reconstruct the message as the index of

the unique coset containing 
 Λ1
� α - # � � . Hence equation (4b) is

equivalent to m̂ � argmin
m � 1 ���3����� M  
 1 � α - # � � mod Λ ! m

2

 �
3. CAPACITY ANALYSIS

Consider the channel depicted in Fig.1. Using the distributive prop-
erty of the modulo operation�3� , mod Λ � �,- � mod Λ ��� , �,- � mod Λ � � � , � - � > F 2n � (5)

Eq. (4b) can be rewritten as ˆ m �/
 Λ1
�.- � � mod Λ2 with,

- � � � α - # � � mod Λ2� �1- # � 1 # α � - # � � mod Λ2� �3�+ m �2� # α 0 � � 0 � � # � 1 # α � � , � 0 � � �$# � � mod Λ2� �. m � α � # � 1 # α � , � mod Λ2 � (6)

If the key 3 is uniformly distributed over �� Λ2 � , it can be used
as a dither vector. Dithering is a well known capacity maximizing
technique. In this case, the ”inflated lattice” Lemma in [8] ensures
that the equivalent noise ˜� � � α � # � 1 # α � � � mod Λ2 is inde-
pendent of the the input 4 m even if the high resolution quantization
assumption is violated. This is due to the fact that dithering makes� (almost) uniform over �� Λ2 � . Thus transmission over channel
in Fig.1 is equivalent to that over an MLAN channel (modulo Λ2)
with input 4 m and noise ˜� . Consequently capacity is attained with
an uniform input and it calculates (in bits per dimension) to [9]

C � Λ1
�
Λ2 � � max

α

1
n
1 log2V2 # h � ˜� � 265 1

2
log2 ; 1 � P

N < � (7)

where h � � � denotes differential entropy and the right side hand term
of (7) is the full capacity Cmax of a channel AWGN with Signal-
to-Noise Ratio P

�
N. Note that the noise ˜� is given by the con-

volution of an uniform self noise � 1 # α � � and a Gaussian scaled
noise α � . If α � 1 (”Zero-Forcing” approach or regular QIM),
˜� � � mod Λ2 is the restriction of a Gaussian PDF over � � Λ2 � .

Moreover, maximizing C � Λ1
�
Λ2 � in (7) amounts to minimizing the

noise entropy h � ˜� � . A quite tight approximation is obtained by min-
imizing the variance VAR � α � # � 1 # α � , � � α2N � � 1 # α � 2P.
The optimal choice for the inflating parameter is the MMSE so-
lution α � P

� � P � N � . This corresponds to DC-QIM. In gen-
eral, no closed-form expression of (7) can be derived and nu-
merical integration is needed to evaluate the differential entropy.
However, two approximate expressions can be found (i) if α � 1,

C � approx � � max B 0 � 1
2 log2 7 V 2

2� 2πeN � n 8 E , and (ii) if α � P
� � P � N � ,

we have h � ˜� � � h � α � # � 1 # α � � � � log � 2πeαN � . A lower
bound on C � Λ1

�
Λ2 � follows

C � Λ1
�
Λ2 � 1

n
; 1

2
log � 1 � P

�
N �$# 1

2
log � 2πeG � Λ2 ��� < � (8)

where G � Λ � is the normalized second moment of the lattice Λ de-
fined as G � Λ � � 1

n 9;: � Λ � =<> 2 � V � Λ � � 2 ? n @ 1 � . The volume V2 in (7)
characterizes the average transmit power needed to transmit the set
of indexes m > ? . With respect to the baseline cubic lattice � n, the
reduction in this transmission power is given by the shaping gain
γs � Λ2 � of the lattice Λ2 given by γs � Λ2 � � 1

�
12G � Λ2 � . Replacing

V2 in (7) by its expression as a function of γs � Λ2 � , the capacity (7)
writes

C � Λ1
�
Λ2 � � max

α

1
2

log2 7 12G � Λ2 � V 2 ? n
2

γs � Λ2 � 8 # 1
n

h � ˜� � � (9)

The n-dimensional lattices considered in this paper (coarse lattice
Λ2) are summarized in table below, together with their important
parameters. These lattices are used for numerical Monte-Carlo-
based integration.

Lattice Name n G � Λ � γs � Λ �� Integer Lattice 1 1
12 0 � 000

A2 Hexagonal Lattice 2 5
36 A 3

0 � 028
D4 4D Checkerboard L. 4 0 � 0766 0 � 061
E8 Gosset Lattice 8 0 � 0717 0 � 108

Capacity curves in bits per dimension are plotted in Fig.2. We

observe that:
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Figure 2: Capacity curves of lattice based transmission for various
lattices over the Watermark-to-Noise Ratio WNR � 10log10 � P � N � .
Bottom to top: � , A2, D4 and E8 lattices. Solid: Capacity curves of
DC-QIM. Dashed: AWGN capacity and asymptotic-limit. Dashed-
dotted: Capacity curves of the Zero-Forcing approach.

(i) Due to its small shaping gain, the integer lattice � provides the
lowest capacity. The gap to AWGN capacity is particularly large
for low WNRs. At low rates (below 0 � 1 bit/dimension), a gap
of about 4 dB is observed. At high WNR, this gap is already
partially bridged up using lattices A2, D4 and E8.

(ii) The improvement due to the shaping gain γs � Λ � of the lattice is
particularly visible at high rates where the shaping gain becomes
significant. Convergence toward the full AWGN capacity Cmax

is such that

0
�

Cmax # CΛ 5 1
2

log2 � 2πeG � Λ ��� �
At low rates however, the shaping gain γs � Λ ��� πe

6 � 1 # 2 � 2R � is
very small and increase in capacity is marginal.

(iii) As expected, DC-QIM with optimal lattice encoding/decoding
outperforms the Zero-Forcing approach. Also, the higher the
lattice dimension n, the tighter are both the lower bound (8) and
the approximation Capprox.

4. JOINT SOURCE-CHANNEL CODING THROUGH
NESTED LATTICES

From a strict functional viewpoint, the watermarking problem de-
picted in Fig.1 is primarily a channel-coding problem, that is, for
transmitting messages. However, the ”power constraint” of the in-
put of the communication channel is the quantization error of the
side information. Hence side information 	 necessitates a good
source coding in order to satisfy efficiently this power constraint.
In other terms, the encoding process (4a) together with the power
constraint 4 5 7 � 2 9 � P is basically a source coding problem. The
only minor difference with respect to classic source coding quan-
tization is that quantization is message-based (through a binning
scheme). In addition a good quantizer would be one that, for the
same transmission rate R, minimizes the quantization error (thus
allowing more information at the channel input for the same in-
put power). So, in the watermarking problem shown in Fig.1, and
broadly in the more general ”Costa problem”, source coding is used
to design channel codewords that have the appropriate energy at the
input of the channel. This is ensured by grouping channel code-
words into (appropriate) cosets of (appropriate) source codes.

4.1 Binning interpretation

The basic concept of combined source-channel coding in lattice-
based watermarking is inherently implicit in the original random

binning coding argument for channels with state information [1].
”Binning” consists in randomly dividing the codebook entries into
subsets (cosets or bins) such that the codewords are far apart as
possible. Hence, the set of codewords in all cosets may be viewed
as a set of channel codewords. Moreover, to transmit a message
m > ? , a codeword that is distortion jointly typical with the state
information 	 has to be found. This can be viewed as quantizing0 to the nearest codeword in the bin identified by m. The set of
codewords collapsed into the same bin m may then be viewed as
a set of source codewords. The efficiency of this source code is
measured by the distortion introduced in quantizing 0 . Thus the
channel coding problem of Costa-based watermarking can also be
understood as a source-channel coding problem when considering
that the watermark signal is obtained through quantization.

4.2 Design of practical good nested codes

Construction of good nested codes is still a challenging problem.
In [6], authors tune the fine lattice Λ1 so as to be an ”exponentially
good channel code”. This approach is convenient for theoretical
analysis but not for practical implementations. Here we use a less
stringent, but more feasible approach. Namely, since the use of a
simple cubic lattice � n for shaping leaves only 0 � 255 bit per di-
mension unexploited, we use Λ2 �#� n as a coarse lattice. Also,
since the transmission rate and the error probability are obviously
conflicting requirements (see [10]) and since high rates are targeted
we use Construction A [7] to obtain the fine lattice Λ1. However
Construction A is a means of building a lattice from a linear code.
The efficiency of this lattice naturally depends on that of the linear
code. Here we ask the fine code to be ”good” enough in a minimum-
distance sense.

4.2.1 RS codes and minimum-distance criterion

The use of the minimum distance criterion is motivated by the fact
that for high WNRs, channel codes performances depend almost
only on their minimum distance. The remaining weight distribu-
tion does not much matter. So, we proceed as follows: (i) se-
lect a good fine code

� � n � k � according to the minimum distance
criterion, (ii) use Construction A [7] to obtain the corresponding
fine lattice Λ1 and finally (iii) use a cubic lattice as coarse lattice
Λ2. An important class of codes having good (large) minimum-
distance is that of Reed-Solomon codes. A Reed-Solomon code
RS � N � K � D � , N � 2m # 1, is Maximum-Distance-Separable (MDS)
meaning that it has the largest minimum-distance among all codes
of the same dimensionality N. For instance the singleton bound is
attained, i.e. D � N # K � 1. However the RS code being defined
over a Galois-Field GF � q � with q � 2m, an equivalent binary rep-
resentation (over GF � 2 � ) should be found to use construction A.
The RS code RS � N � K � D � over GF � q � translates to the binary code� � n � k � d � = � � mN � mK � d � . Note that the the minimum-distance d
of the binary code

� � n � k � d � is not explicitly related to D. A loss in
the relative distance may occur when transforming an RS code into
a binary code. But in most of the cases large minimum-distance
D over GF � q � leads to sufficiently large minimum-distance d over
GF � 2 � . Thus, (binary versions of) RS codes are good candidates
for building the fine lattice Λ1 with Construction A. In addition,
following Zamir et al. construction of family of codes that are
asymptotically ”good”, RS codes represent a good starting point
for a class of asymptotically (in dimension n) good channel codes.
These are called Justesen codes. Justesen codes [11] satisfy both
Gilbert-Varshamov lower-bound and McEliece-Rodemich-Rumsey-
Welch upper bound. These bounds characterize channel codes for
which both R and d

�
n remain bounded away from zero as n in-

creases.
(a) Gilbert-Varshamov lower-bound: Let δ > 7 0 � 1

2 7 . There ex-
ist linear codes

� � n � k � d � over GF � q � with minimum distance
d and rate k

�
n such that d

�
n � δ and k

�
n � 1 # Hq � δ � #

δ logq � q # 1 � � � n �
(b) McEliece-Rodemich-Rumsey-Welch upper bound: For each lin-

ear code
� � n � k � d � of minimum distance d, the rate k

�
n is such



that k
�
n
�

H2 ; 1
2 # �

d
n � 1 # d

n � < for n sufficiently large.

A Justesen code
� � 2N � 2K � may be obtained from the RS code

RS � N � K � as follows: let α be a primitive element of GF � q � , i.e.
αN � 1. If  �� � c1 �3������� cN � , ci > GF � q � is an arbitrary code-
word of RS � N � K � ,  � � � c1 � c1 � c2 � αc2 �����3��� cN � αN � 1cN � and  � �
the corresponding binary m-tuple, the set of all codewordS  � � for �> RS � N � K � forms a Justesen code

� � 2nN � mK � . The minimum
distance of this Justesen code satisfies

d
n � 0 � 11 � 1 # 2R � � (10)

4.2.2 Example: RS(7,5,3)

We consider the RS code RS � 7 � 5 � 3 � over GF � 8 � . We use the cor-
responding binary code

� � 21 � 15 � for construction A. Decoding of
construction A amounts to decoding the binary code

� � 21 � 15 � . We
implemented a soft decision decoder based on the Euclidean dis-
tance. Given some received sequence - , the soft decision decoder
searches for the closest codeword to α - # � - among the set of all
2k � 215 codewords of

� � 21 � 15 � . To obtain the list of all these
codewords, the binary generator matrix Gbin of code

� � 21 � 15 � is
needed. Gbin is obtained as the dual of the binary parity check
matrix Hbin, with Hbin the binary representation of the the parity
check matrix Hq over GF � 8 � given by

Hq � ; 1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5 < �
In Fig.3, the per-dimension bit error probability reduction that re-
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Figure 3: Bit Error Probability v.s. WNR for DC-QIM information
embedding. Dashed: from bottom to top: lattices E8 obtained from
Construction A, D4, A2 and � . Solid: using the RS code � 7 � 5 � 3 � for
the design of the fine lattice with Construction A.

sults from the use of RS � 7 � 5 � 3 � in the construction of the fine lattice
Λ1 is compared to that using the Gosset lattice E8 obtained from
Construction A and also transmission with deep holes of lattices � ,
A2 and D4. The use of lattice holes as a good channel codebook for
low rate transmission is reported in [10]. It can be seen that the gain
is particularly significant for low to medium WNR but may vanish
for very high WNR. The reason is that the minimum distance of
the fine lattice is bounded by min � 2 ��� 2 � . Note that this design,
corresponding to a transmission rate that is 3 � 75 times that of lat-
tice D4 and 5 times that of lattice A2, using the RS code � 7 � 5 � 3 � ,
would also enable further reduction of bit error probabilities if one
relaxes the transmission rate. Hence reliable transmission together
with relatively high payloads are made possible.

4.2.3 Discussion

In the example above we considered an RS code as a start point
for the fine lattice Λ1. This choice may be non-optimal, but it al-
ready shows the gain achieved when channel codewords (fine lat-
tice points) are carefully designed. Of course more sophisticated
linear/trellis codes can be used. Here, our main goal is to point out
the source and channel coding problem in Watermarking and to give
insights -through an example- into the proper design of the involved
codes. The resulting construction has the advantage of enabling low
error rates at relatively high payloads showing thus that the trade-off
between error probability and transmission rate mentioned above
may have good solutions. Note that the use of construction A may
be non-optimal for very high embedding dimensions. Other con-
structions (constructions B, C, and D [7] for instance) may be used
instead. The principle described here remains unchanged. These
constructions have a greater complexity, however.

5. CONCLUSION
In this paper, we focused on nested lattices based information em-
bedding techniques for data hiding. Theoretical performances have
been derived through analogy with Modulo Lattice Additive Noise
(MLAN) channel, illustrating the achieved gain over scalar ap-
proaches (SCS and regular QIM). Then, we use a binning inter-
pretation to argue that lattice Costa-based watermarking can be un-
derstood as a source-channel coding problem. Interestingly, nested
lattice structure turns to be useful (through decoupling of source and
channel codes) for good source and channel codes design. We also,
propose a simple minimum distance-based approach for selecting
good fine channel codes. Both Monte Carlo based integration (for
capacity) and simulation (for BER) are provided for illustrations.
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