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ABSTRACT 
This paper investigates the mathematical framework of 
multiresolution analysis based on irregularly spaced knots 
sequence. Our presentation is based on the construction of nested 
non-uniform B-spline multiresolution spaces. From these spaces, 
we present the construction of orthonormal scaling and wavelet 
basis functions on bounded intervals. For any arbitrary degree of 
the spline function, we provide an explicit generalization allowing 
the construction of the scaling and wavelet bases on the non-
traditional sequences. We show that the orthogonal decomposition 
is implemented using filter bank coefficients of which depend on 
the location of the knots on the sequence. Examples of orthonormal 
spline scaling and wavelet bases are provided. 

1. INTRODUCTION 

Since many years, the multiresolution analysis method has been 
intensively studied see e.g. ([1], [2], [3], [4]). A multiresolution 
analysis is known as a decomposition of a function space into 
mutually orthogonal subspaces. The construction of the scaling and 
wavelet bases is closely related to the multiresolution analysis. The 
traditional wavelet basis is defined as a set of translations and 
dilations of one particular function, the mother wavelet. The scaling 
and wavelet bases, provided in the literature, are constructed under 
the assumptions that the knots of the infinite sequence are regularly 
spaced. This paper, takes into account other working hypotheses 
such as the non-equally spaced data on a bounded interval thus 
resulting in a more general definition of the scaling and wavelet 
functions. More specifically, this paper deals with spline scaling 
and wavelet functions based on non-uniform B-spline functions. 
Indeed, these functions are widely used to represent curves and 
surfaces ([5]). Moreover, they are well adapted to a bounded 
interval when imposing multiplicities at each end of the non-
uniform B-spline function definition support ([6]). There is an 
extensive bibliography on spline scaling and wavelet functions with 
a uniform spacing knot ([7]). While relatively little works have 
been published about these functions on arbitrary non-uniform 
spacing knots ([9]). The construction of the wavelet basis on 
irregular spacing knots is more complicated than the traditional case 
(equally spaced knots). On a non-equally spaced knots sequence, 
the spline wavelets cannot be obtained by translations or dilatations 
of the mother wavelet. The main objective of this paper is to 
provide, for this non-traditional configuration of knots sequence, a 

generalisation of the underlying scaling and wavelet functions, 
yielding therefore an easy multiresolution structure. 
The paper is organized as follows. Section 2 summarizes some 
necessary background material concerning the non-uniform B-
spline functions allowing therefore the design of orthonormal B-
spline basis. Section 3 introduces multiresolution spaces on 
bounded intervals. The construction of spline scaling functions is 
then described. Section 4 introduces the wavelet spaces and gives 
the required conditions to design a non-uniform B-spline wavelet 
basis on bounded intervals. Section 5 is concerned with the two-
scale difference equation. Explicit generalizations of the scaling 
and wavelet functions are provided for any arbitrary degree of the 
spline function. Some examples are presented. 

2. ORTHORMAL NON-UNIFORM B-SPLINE 
BASIS 

Before developing the multiresolution analysis on bounded intervals, 
we briefly recall the orthonormal non-uniform B-spline basis. 
The definition of a non-uniform B-spline function has been proposed 
initially by Curry and Schoenberg ([6]). Given a set of 2+d  
samples, located at arbitrary known knots. The knots sequence is 
organized according to an increasing order 1... ++<< dii tt . For 

Rt∈ , the ith  non-uniform B-spline function of degree d , 
denoted [ ] )(

1,, tBd
tti dii ++

, is given by the following equation: 

[ ]
d

diiidi
d

tti ttttttB
dii +++++ −−=
++

)](.,...,)[()( 11,, 1
 

This equation is based on the thd )1( +  divided difference applied 
to the function dt +− )(. . The definition of the divided difference is 
as follows:  
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where )0,max()( txtx −=− +  is the truncation function. The non-
uniform B-spline function is represented by a piecewise polynomial 
of degree d . It has a finite support. If a knot in the sequence 

1... ++<< dii tt  has a multiplicity of order 1+µ , i.e. the knot occurs 
1+µ  times, then the definition of the divided difference applied to 

the function dtg +−= )(.  becomes: 
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The n  non-uniform B-spline functions [ ] [ ]{ }d
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d
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,..., , 
defined on the knots sequence bttta ndiii =<<<= +++ ...1 , 
generates a basis for the spline space. This space is spanned by 
polynomials of degree d . The linear combination of these n  B-
spline functions defines the spline function. The dimension n  of 
the basis depends on the multiplicities imposed on each knot ([6]) 
of the sequence. 
In this paper, we impose a multiplicity, on each knot, of order 

1+d  ([8]). Therefore, the spline function is defined on a sequence 
composed only of two consecutive knots, as follows:  

ndididiii ttttt ++++++ ==<=== ...... 11  

This configuration of knots provides the smallest spline space 
dimension equal to 1+d . Whatever the degree of the spline, the 
construction of the basis elements has been generalized [1]. For any 
degree d  of the spline function, the non-uniform B-spline elements 
are generalized by the following equation: 
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and di ≤≤0 . where ( ))!(!! ididCi
d −=  is the binomial 

coefficient. The orthonormalization of the non-uniform B-spline 
basis is easily carried out by the Gram-Schmidt method. The 
elements of the basis are therefore denoted as follows: 
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Figure 1 presents the 1+d  non-uniform B-spline functions of the 
orthonormal spline basis for different degrees. The left graph 
concerns the orthonormal basis for 0=d . The right graphs 
correspond to the orthonormal basis for 1=d  (linear). The layouts 
are presented on the interval [ ]2,0 . 

 
Figure 1 Non uniform orthonormal spline basis for 0=d  (left 

graph) and 1=d  (right graphs) 

3. SCALING BASIS FUNCTIONS ON BOUNDED 
INTERVALS 

In a partition of non-equally spaced knots, the underlying concept 
of translating and dilating one prototype function is not possible 
anymore. Thus, the construction of the orthonormal non-uniform B-
spline scaling and wavelet basis functions on bounded intervals 
starts with the specification of the underlying multiresolution 
spaces. 
Let us consider an infinite sequence of samples located at non-
equally spaced knots. The initial corresponding knots sequence is 

denoted 0S  according to an increasing order: 
...... 110 <<<<< +ii tttt  

Each knot of this sequence has a multiplicity of order 1+d . 0S  is 
considered as the finest partition. 

The multiresolution analysis consists in approximating a given 
function )(tf  at various resolution levels j  using orthogonal 
projections on the corresponding approximation subspaces. The 
space corresponding to the highest resolution level 0=j  is 
denoted 0V . It is spanned, on each bounded interval, by 1+d  
orthonormal non-uniform B-spline functions as follows: 
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Satisfying the orthonomal conditions: 
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for [ ]dk ,0∈∀ , [ ]dl ,0∈∀ , Zi∈∀  and Zm∈∀ . 

where klδ  and imδ  represent the Kronecker Delta. At any 
resolution level j , the approximation of the function )(tf , on a 
bounded interval [ ] jii Stt jj ∈

+ )1(22 ,  (i.e. coarse partition), is denoted 
[ ] )(

)1(22
,, tf

ijij ttj
+

. The sequence jS  is represented by the following 
knots ...... )1(220 <<<<

+ii jj ttt . I.e. going to the next coarser scale 
amounts to approximate the same signal with one knot out of two.  
In order to minimize the approximation error 
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 is defined as its orthogonal projection on the 
subspace jV  on which it belongs. These subspaces are known as 
scaling subspaces. The corresponding approximation subspace jV  
is defined as follows: 
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Therefore, the multiresolution approximation is composed of 
embedded partitions: ...... 110 jj SSSS ⊃⊃⊃⊃ − . The scaling 
subspaces are obviously nested as follows: 

... ...V 110 jj VVV ⊃⊃⊃⊃ −  

At any resolution level j , the scaling functions constitute an 
orthonormal non-uniform B-spline scaling basis of the subspace 

jV . Indeed, it is easy to check that the following properties are 
satisfied: 
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for [ ]dk ,0∈∀ , [ ]dl ,0∈∀ , Zi∈∀  and Zm∈∀ . 
where klδ  and imδ  represent the Kronecker Delta. 

Let us present the scaling basis for 0=d  and 1=d , on the 
bounded interval [ ]1, +ii tt . The simplest orthonormal non-uniform 
B-spline scaling basis is built for 0=d . This scaling basis is 
known as the Haar scaling function in equally spaced knots. The 
corresponding basis contains only one function (see figure 1). Its 
expression is: 



[ ] [ ]
ii

tttt
tt

tBt
iiii −

==
+

++

1

0
,,0

0
,,0,0

1)()(
11

ϕ  for 1+≤≤ ii ttt  

For 1=d , the orthonormal scaling basis is composed of two 
scaling functions: 
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4. WAVELET BASIS FUNCTIONS ON BOUNDED 
INTERVALS 

The approximations of a given function )(tf , on a bounded 
interval, at the two following resolutions j  and 1−j  are 
respectively equal to their orthogonal projections on the scaling 
subspaces jV  and 1−jV . Recall that the subspace 1−jV  contains the 
subspace jV . The orthogonal complement of the subspace jV  in 
the subspace 1−jV  is introduced to carry the necessary details 
improving the approximation of the function in the subspace 1−jV . 
Therefore, the orthogonal projection of the function )(tf  on the 
subspace jV  is decomposed as the sum of orthogonal projections 
on jV  and the complement subspace denoted jW . This subspace 

jW  is known as orthogonal non-uniform B-spline wavelet 
subspace, at resolution level j . This leads to the following 
relation: jjj WVV ⊕=−1 . The wavelet space jW  is spanned by the 
wavelet functions denoted [ ] )(
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The wavelet functions must satisfy the following conditions: 
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for [ ]dk ,0∈∀ , [ ]dl ,0∈∀ , Zi∈∀ , Zp∈∀ , and 1≥j . 

5. TWO-SCALE EQUATIONS ON BOUNDED 
INTERVALS 

This section studies how the traditional two-scale equations must be 
adapted to an infinite non-equally spaced knots sequence. A more 
general definition is then required for the multiresolution analysis 
based on bounded intervals. Indeed, the scaling (respectively 
wavelet) functions are not dilated or translated versions of a 
prototype scaling (respectively wavelet) function. 
Since the scaling subspace 1−⊂ jj VV , the kth  normalized scaling 
function [ ] )(

)1(22
,,, td
ttkj

ijij +

ϕ  belongs to jV . Therefore this function can 
be expressed as a linear combination of the basis functions from the 
subspace 1−jV . This leads to the following two-scale equation: 
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where [ ]dk ,0∈  and Zi∈ . 

Since [ ] [ ] ipkl
d

ttlj
d

ttkj tt
pjpjijij

δδϕϕ =
++

)(),(
)1(22)1(22

,,,,,,  ( [ ]dk ,0∈∀ , 

[ ]dl ,0∈∀ , Zi∈∀  and Zp∈∀ ), it is easy to show, after some 
manipulations, that the coefficients are given by these two 
equations: 
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where for [ ]dk ,0∈ , [ ]dn ,0∈ , 1,0=m , and Zi∈ . These 
coefficients are parameterized by two consecutive knots belonging 
to the sequence jS . For convenience reasons, these coefficients are 

gathered in a matrix denoted ),,( )2(2)1(22 111 ++ −−− iiij jjj tttH  as follows: 
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Figure 2 Haar scaling functions at three resolution levels 2,1,0=j  
Let us complete the Haar scaling basis example. The matrix 
coefficients ),,( )2(2)1(22 111 ++ −−− iiij jjj tttH  becomes: 
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The scaling function at the resolution level 1=j  becomes 
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Figure 2 presents the orthonormal scaling B-spline basis at three 
resolution levels ( 2,1,0=j ). We consider a finest sequence 0S  
equal to [ ]8,7,3,2,0 . The scaling space 0V  is spanned by four 
scaling functions { [ ] )(0

2,0,0,0 tϕ , [ ] )(0
3,2,1,0 tϕ , [ ] )(0

7,3,2,0 tϕ , [ ] )(0
8,7,3,0 tϕ } 

represented by the first graph in Figure 2. The scaling space 1V  is 
spanned by two scaling functions { [ ] )(0

3,0,0,1 tϕ , [ ] )(0
8,3,1,1 tϕ } given 

by the second graph in Figure 2. Only one scaling function 
[ ] )(0

8,0,0,2 tϕ , represented by the third graph, generates the scaling 
space 2V  represented by the third graph in Figure 2. 



On the other hand the wavelet subspace 1−⊂ jj VW . Thus, the kth  
wavelet function [ ] )(
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ψ , at resolution level j , can be also 
expressed as a linear combination of the scaling basis functions 
from the subspace 1−jV . We obtain the following decomposition: 
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with [ ]dk ,0∈ , 1,0=m , [ ]dn ,0∈  and Zi∈ . 

For convenience reasons, these coefficients are also gathered in a 
matrix denoted ),,( )2(2)1(22 111 ++ −−− iiij jjj tttG . It is enough to replace the 
set of coefficients { }nm

kjh ,
,  in the matrix ),,( )2(2)1(22 111 ++ −−− iiij jjj tttH  by 

the coefficients { }nm
kjg ,

, . 
For computing the wavelet coefficients, we use the fact that (i) the 
scaling subspace is orthogonal at the wavelet subspace, for any 
resolution level ( 1≥j ): 
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and (ii) the orthonormality of the wavelet basis: 
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After some manipulations of preceding equations, the coefficients 
{ }nm

kjg ,
,  are given by solving the following homogeneous system of 

linear equations: 
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The solution of this system consists in finding a basis of the null 
space of ),,( )2(2)1(22 111 ++ −−− iiij jjj tttH  corresponding to the required 
coefficients { }nm

kjg ,
, . 

Let us construct the Haar wavelet basis. For this, we must find 
matrix ),,( 211 ++ iii tttG  as explained above. The matrix becomes: 
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Figure 3, presents the Haar wavelet function at the resolution levels 
2,1=j . The first curve, in Figure 3, concerns the two wavelets 

functions { [ ] )(0
3,0,0,1 tψ , [ ] )(0

8,3,1,1 tψ } generating the space 1W . The 
second curve represents the wavelet function [ ] )(0

8,0,0,2 tψ  spanning 
the space 2W . 
These forms of decomposition are equivalent to the traditional 
decomposition (knots equally spaced with filter banks) except that 
the filters ( jH , jG ) depend on the knot location. Let us remember 
that in the case of equally spaced knots, the matrices jH  and jG  
are each one modelled by orthogonal filters with a finite impulse 
response more precisely called conjugate mirror filters. The 
difference between regular partitions is that each matrix is modelled 
by a set of different filters because they depend explicitly on the 
repartition of the knots. 

 
Figure 3 Haar wavelet functions at two resolution levels 2,1=j  

6. CONCLUSION 

This paper has explored the underlying mathematical framework of 
the one-dimensional multiresolution analysis based on non-equally 
spaced knots sequence. We have shown that the underlying 
concept of translating and dilating one prototype function is not 
valid any more. The specifications of the underlying 
multiresolution spaces involve the construction of orthonormal 
non-uniform B-spline scaling and wavelet bases on bounded 
intervals. For any arbitrary degree of the spline function, we have 
provided an explicit generalization for the construction of the 
scaling and wavelet bases on non-traditional sequences. We show 
that the orthogonal decomposition is implemented using different 
filter banks depending on the knots in the sequence. These first 
results lead us to investigate, in future work, their application to 
problems such as image compression. 
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