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ABSTRACT

Motion compensation is an essential problem in video
coding. The main drawback of the usual motion estimation
methods is that they divide the images into blocks or patches
which do not correspond to moving objects. In this paper, we
propose a method to estimate the motion in regions instead
of blocks. We define a cost functional to estimate simulta-
neously the segmentation and the motion of the regions. We
introduce a joint motion estimation and segmentation algo-
rithm based on the derivation of this cost functional. We
show some encouraging results for video compression.

1. INTRODUCTION

The goal of this paper is to propose a method to esti-
mate motion in video sequences for coding purposes. Most
video coders, including MPEG-like coders and more re-
cent wavelet-based coders [7], use simple motion estimators
based on block matching algorithms. Even though these al-
gorithms are fast and quite accurate, they still have some
issues : indeed, since the subdivision into blocks does not
match the positions of the moving objects, some blocks over-
lap regions with different motions, which creates blocking
artifacts in the coded-decoded sequence.

To overcome this problem, one should consider a seg-
mentation of the moving objects. Unfortunately, most of
the image segmentation techniques based on active contours
[4, 8, 9, 10, 12, 13] are not fully automatic, and they are
too complex to be implemented within a video coder. For
this reason, we propose a simplified active contour approach
to estimate motion and segmentation simultaneously in a lo-
cal context. More precisely, we divide the image into mac-
roblocks in which segmentation is performed independently.
We suppose that there are at most two regions with different
motion in each macroblock.

In order to decide whether each macroblock should be
split or not, a block selection process will be run. The
selected blocks are now distinct joint motion segmentation
problems and we will now define a cost functional to solve
them simultaneously. Finally, we will show how this model
allows to avoid occlusion.

This technique is unable to provide a global segmenta-
tion of the image, but this information is not mandatory for
coding purposes.

2. BASIC IDEA AND MOTIVATIONS

2.1 Blocks versus Regions

In classical block-based motion estimation methods, when
the prediction error in a block is above a threshold, the block

is further divided into smaller blocks. We will show in this
paper that we obtain better results by dividing the blocks into
regions instead, using splines [15] or at least discontinuous
straight lines.

This model might not perform better than the block-based
model with small blocks in all cases. However it should be
a good alternative specially on object borders, as shown in
figure 1

Figure 1: Splines region better than block-based region

2.2 Transmission cost

Let us compare the transmission cost between the two meth-
ods : the first method divides a block into 4 smaller blocks
(4 motion vectors); whereas the second method divides it
into 2 regions (4 control points and 2 motion vectors), fig-
ure 1. The precision of the motion vectors is typically 1/8
pixel precision, and the precision of control points is one
pixel. Moreover 2 out of 4 control points are on the bor-
der of the block so these points are represented by only one
parameter. The region-based representation can be coded
using 5 vectors: 2 control points, 1 vector made of 2 para-
meters and 2 region motion vectors, versus 4 vectors with
smaller blocks. The transmission cost in each macroblock is
then : 2 motion vectors at 1/8 pixel precision plus 3 control
points position at pixel precision. With the smaller blocks
method it would be 4 motion vectors at 1/8 pixel precision.
In a coder, this represents 64bits/macroblock for our method
versus 64bits/macroblock for the block-based method. As-
suming that not all blocks are divided by a spline, we even
obtain a smaller motion information in the compressed video
with the bonus of a greater spline precision Fig. 1.

3. SEGMENTATION AND MOTION ESTIMATION

3.1 Criterion definition

A region in the frame is defined by the optical flow. Let
I(m, i) be a video sequence, m the spatial coordinates, i the
frame number, and v the optical flow between image i and im-
age i+1. v is a vector field representing an apparent motion



related to a local gray-scale coherence between two consec-
utive images [6, 5, 14, 16, 11] .

(I(m, i)− I(m+ v, i+1))2 = 0 (1)

In general, Eq.(1) has several solutions, since many points
in an image have the same gray-scale value. Therefore, the
problem of computing the motion of a point must be regular-
ized. First, Eq.(1) can be extended to a domain surrounding
this point, second, we assume that the optical flow v constant
over a region W . Therefore, region W should be a minimizer
of the following energy (2):





J(W ) =
∫

W
(I(m, i)− I(m+ v(W ), i+1))2dm

v(W ) = argmin
v

∫

W
(I(m, i)− I(m+ v, i+1))2dm

(2)
The cost functional J (2) is minimized to solve motion and
segmentation problems simultaneously.

For higher robustness, the functional is defined on a set of
two frames surrounding the image of interest, a forward and
a backward frame (previous equation is forward only), and
we constraint the motions v computed backward and forward
to be equal i.e uniform motion assumption.

k(m,v) = (I(m, i)− I(m+ v, i+1))2

+ (I(m, i)− I(m− v, i−1))2 (3)





J(W ) =
∫

W
k(m,v(W ))dm

v(W ) = argmin
v

∫

W
k(m,v)dm

(4)

Our cost functional (4) must be minimized in each mac-
roblocks. An alternate minimization algorithm is then de-
fined in each :
1. Estimate the motion v∗ for a fixed segmentation (W con-

stant) in section 3.3.
2. Estimate the segmentation W ∗ for a fixed motion (v con-

stant) in section 3.2.
3. Iterate until convergence.

3.2 Segmentation

For a fixed motion, in order to find the region that minimizes
the cost functional, we use a region competition algorithm.
For instance, the functional J for two regions including a reg-
ularization term can be written as follows:

As the two regions form a partition of the block there is
only one unknown W , with W = W 1, W = W 2 and ¶ W = G .

J(W ) =
∫

W
k(m,v(W ))dm+

∫

W
k(m,v(W ))dm+

∫

¶ W
b dt (5)

The first and second term are the energy (2) applied on the
two regions of the block, and the last term is the regulariza-
tion term where G is the contour between the two regions and
b a constant.

3.2.1 Energy derivative using shape gradients

Derivating this functionnal on a region is not easy, moreover
when the criterion terms kj (m,v) are region-dependant. A

shape gradient model [4, 12, 13] is used to make the energy
depend on an evolution parameter t .

J(G (t ), W 1(t ), W 2(t )) = J(t ) (6)

Jehan Besson et al. [4, 13] then proposed a method to com-
pute the eulerian derivative J′ :

J′(t ) =
∫

G (t )
(kj (m,v2)− kj (m,v1)(V.N)ds

+
∫

G (t )
(−b k )(V.N)ds (7)

V is the unknown local deformation of G and N is the inward
unit normal to G .

3.2.2 Evolution equation

The derivative (7) must be negative to go towards to the min-
imum of the functionnal. The evolution equation ¶ G

¶ t is then:

V =
¶ G
¶ t

= (k(m,v1)− k(m,v2)+ b .k ).
−→
N (8)

We use active parametric contours to model the boundary
¶ W . ¶ W is represented by an open spline, the first and last
control points of the splines are located on a block border and
their evolution are also projected to stay on the border. An
explicit parametrization of the active contour is performed by
interpolating a spline between the control points.

3.3 Motion estimation

A classical matching method is used to compute motion.
However the matching is performed with regions instead of
blocks, and more precisely a fast suboptimal matching algo-
rithm is used: the Diamond Search [17]. We recall that the
matching criterion is (See Eq. (4)) for a fixed W .

v(W ) = argmin
v å

x∈W
k(m,v) (9)

To further improve the results, the motion is computed using
the YUV color components using a color weighting as in [3].

In addition, as the alternate minimization process pro-
vides a slightly modified region from the last iteration, we
can initiate the Diamond Search algorithm with the previ-
ously computed motion.

4. IMPLEMENTATION

4.1 Initialization and block selection

A block of homogeneous motion does not require to be split
by a spline. The algorithm must select the blocks to be di-
vided and, at the same time, must initialize a first spline in
these blocks. This selection is a three-step procedure:
• First, every block is divided into 4 smaller blocks. Then

are computed the motion vectors in these smaller blocks
with a block matching algorithm. Finally we compute a
normalized distance between the each pairs of vectors:

d = max
i=1..4, j>i

‖vi− v j‖
min(‖vi‖,‖v j‖) (10)

and we threshold this value to choose if a block should
be split by a spline or not.



• As a requirement for compression applications, we
threshold the mean value of the prediction error at initial-
ization, which helps to produce an effective segmentation
for video coding rather than a regularized one.

• Finally, we threshold the same criterion (10) applied to
the motion vectors of the two regions delimited by the
spline

In addition, we use the first threshold to initialize a first spline
in the block : the blocks (i, j) found by maximizing d in (10)
defines the two classes of motions. The two other blocks are
classified whether they are closer from the motion of i or the
motion of j, closer in the sense of the same normalized dis-
tance. The motion classification leads to six different possi-
ble initializations made of control points splitting the blocks.

Figure 2: Six possible initializations

4.2 Topology management

We assume that a block is composed of at most two connex
regions separated by a spline. However if the spline reaches
a border, it splits the block in 3 regions; in this case the spline
is cut into two parts and the shortest one is discarded, so that
only two regions remain (See Fig. 3).

Figure 3: Topology Management

5. EXPERIMENTAL RESULTS

The proposed method was tested on the sequence ”Erik”, on
the frames 18 to 24 which represent a quite uniform transla-
tion, needed by our bidirectional constraint.

5.1 Segmentation analysis

Let us analyze the result on the mid frame 21, the result is
shown in Fig. 4. The method seems to perform well. Note
that some blocks at the bottom of the frame were not divided
by a spline because the background is quite homogeneous,
so even with Erik’s motion, the prediction error is lower than
the energy’s threshold.

Figure 4: Macroblock spline segmentation

5.2 Prediction error

In order to estimate the performances in terms of prediction
error the proposed segmentation method was applied to the
8 frames of sequence Erik. Each frame was processed using
the next and previous frame as detailed above. The Tab. 1
presents the prediction error energy per frame (PEEF), aver-
aged over the 8 frames. The PEEF is defined as follows:
• Case with 4 blocks: the PEEF is equal to the sum of the

prediction errors (from (3)) of the 4 blocks composing
a macroblock, summed over each macroblock in which
inhomogeneous motion was detected.

• Case with 2 regions: the PEEF is equal to the sum of the
prediction errors (from (3)) of the 2 regions composing
a macroblock, summed over each macroblock in which
inhomogeneous motion was detected, i.e split by a spline.

By definition, in both cases, the same macroblocks are con-
sidered. The proposed method leads to a decrease of about
1/3 of the average PEEF on the 8 frames.

Table 1: Energy of prediction error on the split macro-blocks:
spline method vs smaller blocks method

Macroblock division 4 blocks 2 regions gain in %
Average PEEF 59.9 39.1 33.90

6. OCCLUSIONS MANAGEMENT

Figure 4 shows that segmentation splines are actually located
a few pixels away from the object to be segmented. This is
due to the background being occluded by Erik. Indeed, since
criterion (3) is bidirectional, occluded background parts are
on the both sides of Erik. The occluded background on the
Erik’s sequence represents up to 10% of a block, which is
much more important than in a classical algorithm on the
whole image where occluded parts represent about 1% of the
image. Thus we must take occlusion into account, as the
problem is local we suppose there is only one kind of occlu-
sion which happens only in backward or forward estimation.
To correct this problem, a weighting between forward and
backward estimation will be used. For the bidirectional pre-
diction, the weighting is the same in both directions, we will
adjust the weightings in forward prediction or backward pre-
diction if occluded parts are detected. The new criterion with
weightings is thus described in (11).

k(m,v) = c f ∗ ((I(m, i)− I(m+ v, i+1)))2

+ cb ∗ ((I(m, i)− I(m− v, i−1)))2 (11)

where c f and cb are respectively the forward and the back-
ward weightings.

6.1 Occlusion detections

The occlusion detection method is now to be defined as well
as the set of weightings. The constraint Block Matching al-
gorithm gives us two values of the criterion (9): one forward
and one backward. Comparing these two values, we can as-
sume that if the forward (resp. backward) criterion value is
some percentage higher than the other backward (resp. for-
ward) criterion value there is an occlusion problem, so we set



c f (resp. cb) to 0 and the other to 2. Otherwise, we use the
constraint bidirectional method, so c f and cb are set to 1.

6.2 Some results

We compare the segmentation results with and without oc-
clusion management. We count the wrong-classified points
in the two cases and we compare the results with a manual
segmentation. There are 1400 wrong pixels using our method
without occlusion management and only 1000 wrong pixels
using our method with occlusion management, see figure 5.
Visually, we observe an important diminution of the wrong

Figure 5: Macroblock spline segmentation with occlusions
management

pixels, the splines are much closer to Erik; we can also no-
tice some improvements of the selection algorithm behavior;
a spline at highlighted block wrongly removed by criterion
(3), Fig. 4 are now back in the video, Fig. 5.

The results shown on the 8 frames in Tab. (2) in terms
of PEEF (as defined in 5.2) are not better because our error
criterion (3) does not take account on occlusions. However
using an adaptative filtering, as presented in [1, 2], this accu-
rate segmentation should provide better results.

Table 2: Energy of prediction error on the split macro-blocks,
with occlusion management

Macroblock division 4 blocks 2 regions gain in %
Average PEEF 57.9 42.8 25.83

7. CONCLUSION

We have described a joint motion segmentation and motion
estimation algorithm. We adopted a simplified approach us-
ing macroblocks in which the problem is solved indepen-
dently in each macroblock. We presented interesting first re-
sults on video coding. In future works, we intend to further
improve the robustness and the efficiency of our algorithm by
adding image gradient terms in our criterion. We will also in-
tegrate the proposed method into a full wavelet-based video
coder and adapt our original optical flow error criterion to a
wavelet subband error criterion.
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