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ABSTRACT
In this paper, the pulse shape design for various commu-
nication systems including PAM, FSK, and PSK is consid-
ered. The pulse is designed by imposing constraints on the
time and frequency domains constraints on the autocorrela-
tion function of the pulse shape. Intersymbol interference,
finite duration and spectral mask restrictions are a few exam-
ples leading to convex sets in L2. The autocorrelation func-
tion of the pulse is obtained by performing iterative projec-
tions onto convex sets. After this step, the minimum phase
or maximum phase pulse producing the autocorrelation func-
tion is obtained by cepstral deconvolution.

1. INTRODUCTION

The problem of pulse shape design often comes up in com-
munication systems including PAM, FSK, and PSK with the
challenge of utilizing the bandwidth efficiently while having
a low complexity receiver. One way is to use a suboptimal
demodulator using a matched filter for complexity reduction
and defining constraints on the spectrum, intersymbol inter-
ference, and duration of the pulse. Each of these conflicting
constraints are convex sets in L2, which are known to provide
a useful base in optimization problems and lay the ground
for the method of projection onto convex sets [1–5]. This
approach was previously used for designing pulse shapes for
digital communication systems [6]. However, the difficulty
of associating the matched filter output to the correspond-
ing time-domain signal still remains, which is a similar prob-
lem to phase retrieval [4, 7]. This information corresponds
to a non-convex set in L2. To avoid this problem, the pulse
shape design is considered in two stages in this paper. In the
first step, the autocorrelation function of the pulse is obtained
by performing orthogonal projections onto convex sets cor-
responding to intersymbol interference, finite duration and
spectral mask constraints. This approach leads to a glob-
ally convergent algorithm. In the second stage, the minimum
phase or maximum phase pulse producing the autocorrela-
tion function is obtained by cepstral deconvolution.

2. PROJECTIONS ONTO CONVEX SETS

In order to design a pulse shape satisfying the requirements,
we use a well-known numerical method called Projection
Onto Convex Sets (POCS), defined on the Hilbert space `2

or L2. It is an iterative method which is based on making
successive projections onto closed and convex sets. A set C
is convex if it satisfies:

∀x,y ∈C, 0≤ α ≤ 1 =⇒ αx + (1−α)y ∈C (1)

The criteria of bandlimitedness. finite duration, and finite
energy correspond to closed and convex sets in L2 or `2 and

they are widely used in various signal design and restoration
problems [1–5]. The benevolence of the method comes from
its convenient use and guaranteed convergence. At each step
of the iteration, an orthogonal projection Pm is made onto a
convex set Cm as:

xm = Pmx = argmin‖x− xm‖ (2)

and the iterates defined by the equation:

yk+1 = P1P2 · · ·PMyk (3)

reaches a feasible solution, which is a member of the inter-
section C0 =

⋂M
m=1 Cm. Note that the feasible solution may

not be unique. However, the intersection C0 of the convex
sets is also a convex set and at each step of the iterations we
get closer to a solution, so that the convergence is guaranteed
regardless of the initial iteration, when C0 is nonempty.

In the next section, we define the convex sets used in the
pulse shape design problem and describe the iterative design
algorithm.

3. DESIGN CRITERIA

In this paper, constraints are imposed on the autocorrelation
function of the pulse-shape. This approach leads to a globally
convergent algorithm because all constraints corresponds to
closed and convex sets in `2.

Let x [n] be the pulse shape and rx[k] = ∑
n

x [n]x∗ [n− k]

be the corresponding autocorrelation function. The set C1 is
defined as the set of autocorrelation functions in `2 whose
Fourier Transform is below a spectral mask D(w):

C1 = {rx | Sx (w)≤ D(w)} (4)

where Sx is the power spectrum of the pulse, or equivalently
the Fourier transform of rx [k].

One can easily check that C1 satisfies the condition given
in (1), using linearity property of the DFT and the well-
known triangle inequality. This is also a bound on the pulse
energy.

Secondly, another convex set is defined by the time-
limitedness of the signal by an interval of duration Tp.
Thus, the corresponding autocorrelation function is also
time-limited. When the pulse signal is nonzero for [0,Tp] the
corresponding autocorrelation function is possibly nonzero
in the interval [−Tp,Tp] and the convex set C2 describing the
time-limitedness information is defined as

C2 =
{

rx | rx [k] = 0, |kTs|> Tp
}

(5)

where Ts is the sampling period of the underlying continuous
signal. It is trivial to check that this set also satisfies the
condition in (1).



Finally, we define the third set as the `2 signals whose au-
tocorrelation samples at integer multiples of a period K (ex-
cept 0th sample) magnitude-wise sum up to less than a certain
bound b. This corresponds to putting a bound on worst case
degradation due to intersymbol interference. Formally,

C3 =

{
x ∈ `2 | ∑

k 6=0
|rx [k ·K]| ≤ b, b> 0

}
(6)

where rx [k] = ∑
n

x [n] · x [n− k] is the autocorrelation of the

signal. Careful analysis of (6) reveals that C3 is not convex
due to the cross terms of the autocorrelation. We can still use
other sets such as

Ch =

{
h ∈ `2 | ∑

k 6=0
h [k ·K]≤ b, b> 0

}
(7)

which is indeed convex, and if we can find a correspondence
between Ch and C3, we can achieve a feasible solution for the
three convex sets. In order to find a correspondence between
Ch and C3, we define a subset Cs of C3 such that:

Cs =

{
x = F−1

{√
F {rx [k]}

}
· e− j 2π

N mn0 ,

x ∈C3 | rx [k] ∈Ch

}
(8)

where n0 is a nominal time delay for the pulse shaping filter
to be realizable [8], N is the length of the discrete Fourier
transformation.

An alternative for this set could be the set of minimum
phase signals having the same autocorrelation function rx[k]:

Cs′ = {x ∈C3 | rx ∈Ch} (9)

Consequently, we can define a scheme for finding a pulse
shape satisfying the given requirements. We make successive
projections onto the three sets defined above iteratively as
described in (3).

The projection operators can be defined as follows, re-
spectively:

P1x [n] = F−1 {Xm [k]} (10)

Xm [k] =

{
X [k] , |X [k]| ≤ D [k]

D [k] · e jΦ[k], o.w (11)

where Φ [k] is the phase of X [k], and

P2x [n] =

{
x [n] , nTs ∈ (0,Tp)

0, o.w. (12)

where Ts is the sampling period, and

P3x [n] = F−1
{√

F {rh
x [k]} · e− j 2π

N mn0

}
(13)

where rh
x [k] = Phrx [k], and finally the projection T onto Ch

can be defined as:

T z [n] =

{ z[n]
b · ∑

k 6=0
|z [k ·K]| , ∑

k 6=0
|z [k ·K]|> b, n = k ·K

z [n] , o.w.
(14)

If one would like to project onto Cs′ instead, we can
define the associated projection as [9]:

T ′x [n] = F−1 {exp [H (lnF {x [n]})]} (15)

Hy [m] =

{ 0, m< 0
y[0]
2 , m = 0

y [m] , m> 0
(16)

It is worth also noting that we work with real signals, and
taking real parts of the iterations corresponds to projecting
onto convex sets of real signals, which we could denote by
P4.

4. EXAMPLE DESIGN

In this section, we present some exemplary design ap-
proaches through our method. In order to achieve a feasible
solution quickly, we start from an initial root raised-cosine
signal with roll-off factor α = 1. In fact, this would not have
been necessary if all the projections we defined in the previ-
ous section were made onto convex sets. We can still get to
a feasible solution starting from a random signal; although
we take this heuristic approach, which by no means is a part
of the convention. It is even necessary to note that in many
iterative solutions consisting of projections onto non-convex
sets, it may be better to start with a random signal, since
behaving otherwise may consistently lead to non-convergent
results, due to the deterministic nature of the projection op-
erators. In our case, however, we are aware of a signal (root
raised-cosine) which is somewhat close to satisfying our re-
quirements; and we simply use that fact by making the root
raised-cosine signal our starting point.

First we identify the values that result in the worst case
degradation for the kth bit as:

Ik ( j) =

{
1, ru (| j− k|T )> 0

0, o.w. , j 6= k (17)

This is simply because the intersymbol interference (ISI)
term should be the negative of the matched filter output at
zero lag, for the worst case degradation to occur.

Then we can define the worst case ISI for a unit energy
pulse shape u(t) as:

ISI = ∑
k 6=0
|ru (kT )| (18)

for which the degradation in signal-to-noise ratio (SNR) is:

d =−20log10 (1− ISI) (19)

Note that d′ = −20log10 (1 + ISI) is not the worst case
degradation since d ′ < d, ISI > 0. Placing a constraint on
the worst case degradation d < 0.25 dB directly puts a bound
on the ISI as:

−20log10(1− ISI)< 0.25 =⇒ ISI < 1−10−
0.25
20 (20)

which constitutes the b value in (14). Henceforth, we ap-
ply the proposed iterative scheme with two other constraints
given by the spectral mask in Fig. 1 as D in equation (4),
the set C2 given in equation (5) and (8), as we have a finite
duration of 40 µs for the example in consideration.



To achieve the outcome of successive projections onto
the sets we defined in the previous section, we stop the itera-
tions immediately as we reach a feasible solution. The pulse
shape given below in Fig. 1 yields a symbol rate of 218 kHz,
causing a worst case degradation less than 0.25 dB.
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Figure 1: Pulse shape designed via proposed method

Fig. 2 illustrates the matched filter output at the receiver,
and the power spectrum of the designed pulse. The mask is
nowhere exceeded by the pulse spectrum, as expected.
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Figure 2: a) Matched filter output, b) Spectral mask and
pulse spectrum

In our second design approach, we take the minimal
phase root and therefore the corresponding the projection op-
erator onto the set Cs′ in equations (9,15).

Since minimum phase signals are causal, we observe the
projections onto Cs′ yield signals with little energy before
index value 0. The energy spillover is due to the lowpass
effect caused by the application of the spectral mask D in
(4). Therefore, we need to pick a time delay n0 as in the
previous design, so that most of the energy stays inside the
limited duration of the time-domain signal. With trial and er-
ror, we observed that a few microseconds were sufficient for
this purpose. The initial iteration was chosen to be random.
Below is the pulse shape in Fig. 3 and the matched filter out-
put, spectral mask and power spectrum of the pulse in Fig. 4.

In order to improve the speed of convergence, we specified
tighter bounds in the projection onto the spectral mask set. In
this case the worst case degradation in SNR turned out to be
1.75 dB. We observe the tradeoff between speed of conver-
gence (projection with a tighter spectral mask) and the worst
case degradation in SNR due to ISI.
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Figure 3: Minimum phase pulse shape
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Figure 4: a) Matched filter output, b) Spectral mask used in
projections (dashdot), spectral constraint mask (dash), power
spectrum of the pulse (solid)

5. CONCLUSIONS

In this paper, we present a method for designing pulse shapes
that obey certain constraints defined in time and frequency
domains. Other constraints that can be represented as convex
sets can be included in the procedure, as well. The method
assures the convergence in case all the constraint sets are con-
vex. We develop a method to associate non-convex constraint
sets with their convex subsets to overcome the problem of
convergence in non-convex sets. We present design exam-
ples to illustrate the procedure.

In our examples iterations converged in reasonable num-
bers of cycles, satisfying all of the requirements. When the
constraints are defined to be too tight, the algorithm oscil-
lates between the projections on the constraint sets. In this



case, one should restart the procedure with looser constraints.
Also, defining the constraints a little tighter than necessary
improves the speed of convergence, with a compromise be-
tween finding the minimum mean square distance solution, a
higher degradation in SNR occurs as a result.
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