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ABSTRACT
The Direction of Arrival estimation algorithm ESPRIT is
capable of estimating the angles of arrival of N narrow-
band source signals using M > N anechoic sensor mixtures
from a uniform linear array (ULA). Using a similar pa-
rameter estimation step, the DUET Blind Source Separa-
tion algorithm can demix N > 2 speech signals using M = 2
anechoic mixtures of the signals. We introduce here the
DUET-ESPRIT (DESPRIT) Blind Source Separation algo-
rithm which demixes N > M speech signals using M ≥ 2
anechoic mixtures.

1. INTRODUCTION

The “cocktail party phenomenon” illustrates the ability of the
human auditory system to separate out a single speech source
from the cacophony of a crowded room, using only two sen-
sors and with no prior knowledge of the speakers or the chan-
nel presented by the room. Efforts to implement a receiver
which emulates this sophistication are referred to as Blind
Source Separation techniques [1; 2; 3].

Generally, in the anechoic blind source separation model,
N time-varying source signals s1(t),s2(t), . . . ,sN(t) prop-
agate across an isotropic, anechoic (direct path), non-
dispersive medium and impinge upon an array of M sensors
which are situated in the far-field of all sources. Under such
conditions the mth mixture can be expressed as

xm(t) =
N

∑
n=1

amnsn(t− tmn)+nm(t)

and an expression for a vector of M anechoic mixtures is
given as[ x1(t)

x2(t)

.

.

.
xM (t)

]
=

[ a11δ (t− t11) . . . a1N δ (t− t1N )
a21δ (t− t21) . . . a2N δ (t− t2N )

.

.

.

.

.

.
aM1δ (t− tM1) . . . aMN δ (t− tMN )

]
?

[
s1(t)

.

.

.
sN (t)

]
+

[ n1(t)
n2(t)

.

.

.
nM (t)

]

where n1(t),n2(t), . . . ,nM(t) are i.i.d. (independently and
identically distributed) and ? denotes convolution.

Generally blind source separation algorithms attempt to
retrieve or estimate the source signals s(t) from the received
mixtures x(t) with little, if any prior information about the
mixing matrix or the source signals themselves. Typically
blind source separation and direction of arrival techniques
such as ESPRIT require the number of sensors to be greater
than or equal to the number of sources (M ≥ N). The DUET
blind source separation algorithm [4; 5] can demix N > 2 sig-
nals using only 2 anechoic mixtures of the signals, providing
these signals are W-disjoint orthogonal (WDO). The DUET-
ESPRIT (DESPRIT) algorithm presented in this paper stems
from an implementation of ESPRIT under a WDO assump-
tion. DUET requires M = 2, whereas DESPRIT can be seen

as one possible extension of DUET when M > 2 mixtures are
available. DESPRIT makes similar assumptions to ESPRIT
as regards the layout of the sensors, namely that the sensors
can be divided into two paired subarrays with each paired
couplet of sensors sharing a common displacement vector.

The paper is structured as follows, Section 2 outlines the
classic ESPRIT parameter estimation algorithm, Section 3
outlines the DUET blind source separation (BSS) algorithm
and how the DUET-like ESPRIT BSS technique we dub DE-
SPRIT emerges, Section 4 gives a summary of the DESPRIT
algorithm implemented as a multichannel DUET extension
and Section 5 presents simulation results for this new BSS
algorithm.

2. DIRECTION OF ARRIVAL ESTIMATION AND
SUBSPACE METHODOLOGY

2.1 Narrowband Array Processing
Classic Direction of Arrival estimation techniques such as
MUSIC [6] and ESPRIT [7] aim to find the N angles of ar-
rival for N narrowband signals s1(t),s2(t), . . . ,sN(t) imping-
ing upon an array of M sensors. With accurate estimation
beamforming can be performed to separate the N signals.

For narrowband signals of centre frequency ω0 a time
lag can be approximated by a phase rotation, i.e. s(t− τ) ≈
s(t)e− jω0τ , where s(t) is the complex representation of a real
signal. As a result the mth mixture can be expressed as

xm(t) =
N

∑
n=1

amne− jω0tmnsn(t)+nm(t)

and by letting amne− jω0tmn → amn allows M sensor mixtures
to be written as[ x1(t)

x2(t)

.

.

.
xM (t)

]
=

[ a11 . . . a1N
a21 . . . a2N

.

.

.

.

.

.
aM1 . . . aMN

][
s1(t)

.

.

.
sN (t)

]
+

[ n1(t)
n2(t)

.

.

.
nM (t)

]

x(t) = As(t)+nx(t) (1)

where the mixing matrix A has complex entries which do not
vary significantly with time and each column may be associ-
ated with an individual narrowband source signal.

An estimate of the spatial covariance matrix

Rxx = E
{

[x(t)] [x(t)]H
}

(2)

can be calculated, where [ ]H denotes a complex conjugate
transpose operation. The Singular Value Decomposition
(SVD) of Rxx is of the form

Rxx = [ Es En ]
[

Λ 0
0 Σ

]
[ Es En ]H , (3)



where Λ is a diagonal matrix with the N dominant entries
associated with N signals, the M−N remaining singular val-
ues are comparable to the noise variance and are contained
in the diagonal matrix Σ, the N column vectors of Es are as-
sociated with the N dominant singular values and the M−N
column vectors of En are associated with the M−N remain-
ing singular values. The subspace spanned by Es is known
as the signal subspace and the orthogonal subspace spanned
by En is known as the noise subspace.

2.2 ESPRIT
The ESPRIT algorithm relies on two subarrays of sensors.
Each element of the first subarray is displaced in space from
the corresponding element of the second subarray by the
same displacement vector. As a result, the time lag between
each sensor pair for a signal travelling between the two sub-
arrays is constant. Without loss of generality we assume that
the original sensor array is a uniformly spaced linear array
consisting of M sensors, as a result we may subdivide the
array of M sensors into two such subarrays of M−1 sensors
each. The first subarray contains sensors 1, . . . ,M−1 and the
second subarray contains sensors 2, . . . ,M.

The M−1 mixtures from the second array can be repre-
sented as

y(t) = AΦ s(t)+ny(t)
where the diagonal matrix

Φ =

 e− jω0δ1

. . .

e− jω0δN

 ,

contains delay terms δn, n = 1, . . . ,N, which are unique to
each source signal and are related geometrically to the angle
of arrival, i.e. δn = ∆cos(θn)/c where ∆ is the distance be-
tween the two subarrays, θn is the angle of arrival of the nth

signal onto the array and c is the propagation speed.
Both data vectors can be stacked to form

[z(t)] =
[

x(t)
y(t)

]
=

[
A
AΦ

]
[ s(t) ]+

[
nx(t)
ny(t)

]
(4)

which is a 2(M−1)×1 vector of mixtures. It follows that the
SVD of the spatial covariance matrix Rzz can be computed

Rzz =
[

Ex Enx

Ey Eny

][
Λ 0
0 Σ

][
Ex Enx

Ey Eny

]H

.

For the no-noise case, the mixing matrix spans the same
space as the signal subspace, i.e. there exists a non-singular
matrix T such that[

Ex

Ey

]
=

[
A
AΦ

]
T (5)

furthermore the diagonal matrix Φ is related to [Ex
†Ey] via

a similarity transform

Φ = T
[
Ex

†Ey

]
T−1 . (6)

where ( )† denotes the Moore-Penrose pseudo-inverse. As a
result the N angles of arrival (θn, n = 1, . . . ,N) can be recov-
ered from the N complex eigenvalues of [Ex

†Ey], which are
of the form

e− jω0(∆cos(θn)/c) n = 1, . . . ,N.

The original ESPRIT algorithm is a time-domain based
technique, where Rzz is approximated by a time average

Rzz ≈
1
T

∫ T/2

−T/2
[z(t)] [z(t)]H dt .

A frequency domain based approach is also possible with the
ESPRIT algorithm being performed at each point in the fre-
quency domain using the covariance matrix

RZZ(ω) = [Z(ω)] [Z(ω)]H ,

where Z(ω) is Fourier Transform of z(t). Such a frequency
domain approach has the advantage that the narrowband as-
sumption placed upon the source signals is no longer neces-
sary. However, at each frequency the N signal subspace vec-
tors are permutated and so, without knowledge of this ran-
dom permutation, combining results across frequencies be-
comes difficult [8].

3. BLIND SOURCE SEPARATION OF W-DISJOINT
ORTHOGONAL SIGNALS

3.1 DUET
DUET handles this permutation problem by mapping each
delay estimate to a source using a weighted histogram.
DUET makes a further simplifying assumption which ES-
PRIT does not require. The DUET method relies on the con-
cept of approximate W-disjoint orthogonality (WDO), a mea-
sure of sparsity which quantifies the non-overlapping nature
of the time-frequency representations of the sources. This
property is exploited to facilitate the separation of any num-
ber of sources blindly from just two mixtures using the spa-
tial signatures of each source. These spatial signatures arise
out of the separation of the measuring sensors which pro-
duces a relative arrival delay, δi, and a relative attenuation
factor, αi, for the ith source.

Using a windowed Fourier transform

SW
i (ω,τ) =

∫
∞

−∞

W (t− τ)si(t)e− jωtdt

the WDO assumption can be written as

SW
i (ω,τ)SW

k (ω,τ) = 0, ∀ω,τ, i 6= k . (7)

Assuming all sources are W-disjoint orthogonal, at a given
time-frequency point only one of the N sources will have a
non-zero value. This allows DUET to perform separation
using only two mixtures. Thus the equations for the mixtures
can be written as follows:[

XW (ω,τ)
YW (ω,τ)

]
=

[
1

αie− jωδi

]
SW

i (τ,ω) (8)

where we have defined si(t) to be the ith source measured at
x(t). From this we can determine expressions for the mix-
ing parameters at each point in the time-frequency domain
of each of the mixtures XW (ω,τ) and YW (ω,τ). Approxi-
mate W-disjoint orthogonality suggests that the parameters
at each point are equal to or, at least, tend towards those for
one source only.

(α̂ j, δ̂ j) =
(

log
∥∥∥∥YW (ω,τ)

XW (ω,τ)

∥∥∥∥ , Im
(

log
(

YW (ω,τ)
XW (ω,τ)

))
/ω

)
(9)



Note that, due to approximate nature of W-disjoint orthog-
onality along with the presence of noise, the mixing pa-
rameters in (9) are only estimates of the true values. If
we calculated these parameter estimates at every point in
time-frequency space, we would expect the results to clus-
ter around the true values of the actual mixing parameters.
N sources produces N pairs of mixing parameters which cre-
ates N peaks in the parameter space histogram. We can then
use these mixing parameter estimates to partition the time-
frequency representation of one mixture to recover the source
estimates. It may be noted that the phase is defined modulo-
π in (9), with closely space sensors of maximum separation
∆max = π fmax (where fmax is the highest frequency with non-
negligible energy content) phase wrapping is not a problem.

3.2 DUET-ESPRIT (DESPRIT)
The ESPRIT algorithm can be performed at each point in the
time-frequency domain using the localised spatial covariance
matrix

RZZ(ω,τ)= E
{[

XW (ω,τ)
YW (ω,τ)

][
XW (ω,τ)H YW (ω,τ)H

]}
(10)

the singular value decomposition of RZZ(ω,τ) at each time-
frequency point is of the form

RZZ(ω,τ)=
[

EX EnX

EY EnY

][
Λ 0
0 Σ

][
EX EnX

EY EnY

]H

,

From equation (6) Φ may be recovered via an eigenvalue de-
composition

Φ(ω,τ) = T
[
EX

†(ω,τ)EY(ω,τ)
]
T−1

at a given time-frequency point, up to N signals may be
present and the resulting N×N diagonal matrix Φ(ω,τ) has
up to N non-zero entries which are of the form

φi = αie− jωδi , i = 1, . . . ,N

where αi and δi are the attenuation and delay parameters for
the ith source. It is discussed in section 3.1 how the DUET
BSS algorithm constructs a two dimensional histogram of
these parameters to identify any number of sources and ul-
timately separate them if they can be assumed to strongly
W-disjoint orthogonal. By borrowing from both techniques
a hybrid DUET-ESPRIT (DESPRIT) blind source separation
algorithm is possible.

This DESPRIT algorithm estimates the delay (equiva-
lently the angle of arrival) and the attenuation of N WDO
source signals as they pass across an ESPRIT-like array of
sensor pairs using two or more anechoic mixtures. Provid-
ing each source has a unique attenuation and delay estimate,
a two dimensional histogram will have N peaks correspond-
ing to N source signals. The centre of each peak provides an
accurate estimate of the actual attenuation and delay of each
source. Since the attenuation and delay parameter estima-
tion is performed at each time-frequency point, the estimates
for the mixing parameters of the N sources can be used to
partition the time-frequency plane into N regions where the
WDO sources are active. As a result N time-frequency masks
with non-zero values at active time-frequency points and ze-
ros elsewhere can be applied to any of the mixtures to demix
these N source signals.

Under a weakened WDO assumption with possibly M−1
sources overlapping in the time-frequency domain the pa-
rameter estimation step of DUET fails, however the DE-
SPRIT algorithm continues to work well providing that the
number of sensors in the ESPRIT-like uniform linear array
outnumber the number of sources that may coexist at a par-
ticular region in the time-frequency domain. A treatment
of the DESPRIT BSS technique operating under a weak-
ened WDO assumption is contained within a future publica-
tion. The current paper examines DESPRIT under the DUET
strong WDO assumption (at most one source is active for ev-
ery time-frequency point).

3.3 DESPRIT as a multichannel DUET extension
Under a strong WDO assumption Λ is a 1×1 scalar λ , Σ has

all near zero entries and
[
EX(ω,τ)
EY(ω,τ)

]
is a 2m×1 vector so as

a result the scalar φ is given by

φ = EX(ω,τ)†EY(ω,τ) . (11)

Furthermore when the expectation operator of equation (10)
is approximated by an instantaneous estimate, i.e.

RZZ(ω,τ) =
[

XW (ω,τ)
YW (ω,τ)

][
XW (ω,τ)H YW (ω,τ)H

]
the expression (11) is equivalent to

φ = XW (ω,τ)†YW (ω,τ) (12)

and so in this case the subspace decomposition of the spatial
covariance matrix is unnecessary. In the M = 2 case this im-
plementation of DESPRIT reduces to DUET and for M > 2
it may be viewed simply as a multichannel DUET extension.

4. THE DESPRIT MULTICHANNEL DUET
EXTENSION

Step 1
A uniformly spaced linear array of M sensors receives M ane-
choic mixtures x1(t),x2(t), . . . ,xM(t), of N WDO source sig-
nals. These M signals are represented in the 2(M− 1)× 1
time-varying vector

z(t) =
[

x(t)
y(t)

]
2(M−1)×1

where x(t) = (x1(t),x2(t), . . . ,xM−1(t))T and y(t) =
(x2(t),x2(t), . . . ,xM(t))T represent signals taken from the
first and second subarrays respectively. K samples are taken
at t = kT, k = 0,1, . . . ,K−1, where T is the sampling period.

Step 2
A window W (t), of length L is formed and by shifting
the position of the window by multiples of ∆ seconds,
localisation in time is possible.

for τ = 0 : ∆ : (K−1)T

z(t,τ) = W (t− τ)z(t)

Z(ω,τ) = DFT(z(t,τ))



for ω = (0 : 1 : L−1)×2π/LT

φ(ω,τ) = X(ω,τ)†Y(ω,τ)

δ (ω,τ) =−Im{loge {φ(ω,τ)}}/ω

α(ω,τ) = |φ(ω,τ)|

end
end

Step 3
A two dimensional histogram of the attenuation and de-
lay parameters (α and δ ) is constructed, weighting of his-
togram values is possible using X(ω,τ)HX(ω,τ) which is
proportional to the power of the source present at each time-
frequency point. N histogram peaks indicate N source sig-
nals, the (α,δ ) values corresponding to the centre of each
peak are mapped back into the time-frequency domain to in-
dicate in which regions each of the N source signals are ac-
tive. Peak Detection is performed using a weighted K-means
based technique.

Step 4
Under the assumption that the N source signals are strongly
W-disjoint orthogonal, a binary time-frequency mask corre-
sponding to the regions of the time-frequency plane where a
source is active is created. Applying the nth mask to any of
the received mixtures recovers the nth source signal. N such
masks are used to separate the N sources.

5. SIMULATION RESULTS

DESPRIT was used to blindly demix four 2.4 seconds long
speech signals, using three anechoic mixtures of these signals
each having been sampled at 16kHz. Plots of the original
source signals, the received mixtures, the two-dimensional
histogram and the demixed signals are given in Figure 1, a
high SNR of 100dB is assumed.

A straight-forward multiple sensor extension of DUET is
Stacked-DUET where the DUET parameter estimation step
is performed for each sensor pair in an ESPRIT-type sensor
array, a weighted histogram made up of all the parameter es-
timates from each DUET implementation is used to estimate
and demix the sources in a DUET-like fashion.

The DESPRIT multichannel extension of DUET can be
compared with Stacked-DUET for the same data as before
under noisier conditions. DESPRIT has clear advantages
at lower values of Signal to Noise Ratios (SNRs) since an
increase in the number of sensors improves parameter es-
timation when using DESPRIT, but Stacked-DUET fails to
improve its parameter estimates when the number of sen-
sors is increased. Figure 2 shows the parameter estimation
histograms for DESPRIT and DUET (Stacked-DUET) for 3
sensors at SNR level 70 dB, 3 sensors at 40 dB and 7 sensors
at 40 dB.
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