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ABSTRACT

We propose a new blind multiuser detection scheme based on an
accelerated subspace tracking in rapidly time-varying channel sce-
narios. The proposed subspace tracker is derived by combining the
projection approximation subspace tracking (PAST) with the inter-
nal model principle, approximately expressing the changing param-
eters with an expansion of polynomial time functions. The proposed
subspace tracker can still maintain the linear computational com-
plexity to the number of users, similar to the PAST. Furthermore, the
effectiveness of the proposed multiuser detector is validated in syn-
chronous DS-CDMA systems with Rayleigh fading through some
numerical simulations.

1. INTRODUCTION

Multiuser detection techniques are necessary for future wireless
communication systems to substantially increase the capacity of
code-division multiple-access (CDMA) systems [1], and a lot of
schemes have been proposed (e.g. [2] [3] and the references within).
Especially, some suboptimal linear detectors such as the decor-
relating detector (DD) and minimum mean-square error detector
(MMSED) have attracted much attention due to their efficiency and
simplicity [4]. Another advantage of these detectors is to realize
blind algorithms by combining subspace trackers. In this case, the
performance of the multiuser detectors highly depends on the track-
ing ability of the subspace methods.

The projection approximation subspace tracking (PAST) [5] is
one of the most efficicent subspace estimators because of not only
the tracking ability but also the computational simplicity. Some
multiuser detectors have been proposed based on the PAST or
PASTd algorithms which is modified by introducing the deflation
steps [6] [7]- Actually, however, fast time-varying channel scenar-
ios such that users move with high or accelerating speed make sub-
space tracking difficult. Furthermore, the simultaneous estimation
of an appropriate forgetting factor and subspace is undesirable from
the standpoint of the computational complexity.

In this work, we propose an accelerated subspace tracking al-
gorithm by introducing the internal model principle to the PASTd,
in which an external input expressed by a finite order of polyno-
mial time function can be cancelled if a corresponding model with
a same or higher order is included in the closed loop. The proposed
subspace tracker can still maintain the linear computational com-
plexity to the number of users similar to the PASTd. And a new
blind multiuser detection scheme is described with the linear detec-
tors such as the DD and MMSED in synchronous direct-sequence
CDMA (DS-CDMA) scenarios employing antenna arrays. Further-
more, the effectiveness of the proposed method is shown in some
numerical simulations under the situation that the spatial character-
istics of the users change rapidly.

This paper is organized as follows. Section 2 briefly illustrates
the data model of a DS-CDMA system and two blind linear mul-
tiuser detectors in terms of the signal subspace. The proposed sub-
space tracking algorithm and its convergence analysis are described
in Section 3. Section 4 contains numerical simulation results, and
the concluding remarks are given in Section 5.
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2. DATA MODEL AND BLIND LINEAR MULTIUSER
DETECTORS

2.1 DS-CDMA Data Model

Consider a synchronous DS-CDMA system of K simultaneous
users. The discrete baseband signal at the mth antenna element
within a symbol interval T is expressed as [6]

K
xm(n) = 3 Ax(n)bi(n)skam(Bk(n)) + &m(n), @
k=1

where Ay(n), by(n) and sk denote, respectively, the received
amplitude, transmitted symbols of +1, and the normalized sig-
nal waveform vector of the kth user. s is given as sy = (1/
vD)[ek(0),---,cx(L —1)]7, where L is the processing gain and
ck(n) € {1} is asignature sequence. &q(n) € C-*1 and am (8¢(n))
denote additive white Gaussian noise (AWGN) and the array steer-
ing vector, consisting of the direction-of-arrival (DOA) 6¢(n) of the
kth user, respectively. The receiver is assumed M-element array and
the structure of the steering vector a(8) = [a1(6k),---,am(6k)]"
depends on array geometry. From (1), the output of M-element an-
tenna array can be vectorized as

K
x(n) = 3 Ax(mbk(n)sx(n) +&(n), o)
(=1

where x(n) = [x] (n),---,x{y(n)]T € CMLX2, the so-called spatio-
temporal signature §,(n) € CM*1 is given by Kronecker product
such as §(n) = a(6k(n)) @ sk [7], and &(n) = (& (n),---, &n(n)]T
whose covariance matrix is a?IML.

To get the spatial property of the received signal, the singu-
lar value decomposition (SVD) of the covariance matrix, R(n) =

E[x(n)x" (n)] is obtained as
U (n)
I[ o |

@)

where Us(n) € CMK and Up(n) € CME*ML=K) denote the sig-

nal and noise subspaces, respectively, and As(n) € CK*X contains
the K largest eivenvalues of R(n).

As(n) 0

R(n)=[ Us(n) Un(n) | 0 0fImi—«

2.2 Blind Linear Multiuser Detectors Using Subspace

A linear multiuser detector for demodulating the kth user’s data
bit in (2) is obtained as a correlator hy(n) € CM-*1 followed by
a hard limiter. For instance in BPSK systems, the symbol detection
is given as [1]

bi(n) = sgn( CER{! (n)x(n)}), (4)

where sgn[-] and [[-IIdenote the sign function and real part, re-
spectively. In this section, we briefly introduce two kinds of blind
multiuser detectors using subspace information, which have been
reviewed in plenty of works (for instance, in [1]-[4] [6] [7]).



2.2.1 Decorrelating Detector (DD)

The DD is formulated so as to completely eliminate the multiple-
access interference (MAI) by the other users [4]. The estimate of
the weight vector wy(n) = di(n) is given in terms of the signal
subspace parameters as
o 1
dk(n) = == A
5t (n)Us(n)(As(n) — 021k ) -1 UL (n)5k(n)

xUs(n)(As(n) - oZTx) " O (n)3g(n),

®)

where s¢(n) is known since we assume a(6(n)) is known. The
steering vector a(6(n)) can be also estimated [7] even if it is un-
known.

2.2.2 Minimum Mean-Square Error Detector (MMSED)

In the MMSED, the weight vector is formulated to minimize the
mean-square error between the symbol of the user of interest and
receiver output [4]. The MMSED in terms of the signal subspace
parameters is expressed as

1
8¢ (N)Us(n)A~1(n) U (n)3k(n)

xUs(n) A~ ()T (n)sc(n).  (6)

y(n) =

3. ACCELERATED SUBSPACE TRACKER

In order to implement the blind linear multiuser detectors described
in the previous section, the estimates of signal subspace parameters,
Us(n) and Ag(n) in (5) and (6), should be obtained adaptively. We
review the PAST and PASTd algorithms [5], and derive an acceler-
ated subspace tracker based on the PASTd algorithm in this section.

3.1 PAST and PASTd Algorithms

In the PAST algorithm [5], the columns of W(n) which span the
signal subspace consist in minimizing the following cost function

—E{Jx(n -

where x(n) is a noisy data vector described in (2), and y(n) =
WH (n—1)x(n). The solution to minimize (7) is given by W (n) =
Us(n)Q, where Us is the estimated matrix of signal subspace and
Q is an arbitrary unitary matrix. Then as it can be shown that
W (n)WH (n) = Us(n)UH (n), the signal subspace in the multiuser
detectors of (5) and (6) can be obtained by using VV( n) instead of
Ijs( n). In [5], Yang also proposed the PASTd algonthm which can

update each column of W(n) = [Wy(n),---,Wk (n)]T via the defla-
tion steps in (12), as an improved PAST algorlthm. The update
procedure of the ith component of the signal subspace is expressd
as follows:

IW(m) Wy}, ™

yi(n) = Wil (n—1)xi(n), ®)
ei(n) = wi(n—1)yi(n) —x;i(n), ©)
2i(n) = Ban—1)+ i), (10)
wi(n) = wi(n—1)—ei(n)yi(n)/Zn), (11)
xi+1(n) = xi(n) —vi(n)wi(n), (12)
fori =1 K

RN

where 0 < 8 < 1 is a forgetting factor and x1 (n) 2 x(n). Zi(n) cor-
responds to the estimate of the ith largest eigenvalue, thus As(n) =
diag[Z1(n),---,2x (n)]. The PAST and PASTd algorithms assure
global convergence to the signal subspace and low computational
complexity.

3.2 Proposed Method by Internal Model Principle

The proposed subspace tracker and multiuser detector is described
based on the PASTd algorithm. In the proposed method, (11) and
(9) are respectively modified as

oo PEY ey
LR Tl T
ei(n) = () (), 19

where ej(n) is a posteriori output error. Let the polynomial P(z~1)
in the numerator be described by

Pz ) =po+pz i+ +pz ", (15)
and it is introduced to stabilize the system, where r < g, pg # 0 and
271 is a time-delay operator. As the unknown time-varying param-
eter vector wi(n) can be regarded as an external disturbance added
into the closed-loop system, the effects of the unknown parameters
can be cancelled out and the stability can be attained by including
the internal model corresponding to the polynomial degree of time
function wi(n) into the parameter adjusting dynamics.

Since ej(n) and wi(n) appear in the right hand side of (13) and
(14) with the same instant, the error cannot be calculated from (14)
directly, so ej(n) should be rewritten by substituting (13) into (14),
as

ai(n) = LA ZDIM M0
I 1+ poy;i (n)yi(n)

~ {P(z') = po}lei(n)y; (n)/2
1+ poy; (n)y

i(n)lyi(n) +xi(n)
0 . (16)

Thus, the new subspace tracking algorithm is derived by combinig
the PASTd with the proposed adaptive identification of time-varying
FIR parameters which is based on the internal model principle. The
PASTd algorithm corresponds to the case with g =1 in (13). The
order ¢ expresses the changing rate of the time-varying parameters.
In case of q = 2, the proposed algorithm can track changing pa-
rameters with constant velocity, and in case of g = 3, it can track
changing parameters with constant acceleration. For example, (13)
and (15) in the case with g = 2 in which the parameters change in a
linear function of time can be expressed as follows:

wi(n) = 2wi(n—1) —Wi(n—2) — poei(n)yi (n)/Zi(n)
—prei(n—1)yi(n—1)/Zi(n—1),

17
ei(n) = {2wi(n—1) — Wi(n—2)}yi(n)
' 1+ polyi(n) 2
prei(n— 1)y (n)yi(n —1)/Zi(n) +x;j(n)
- L+ polyi(n) 2 18)

In addition, the computational complexity of the proposed sub-
space tracker at each instant is (2q + 2)MLK + O(K), while the
PASTd requires 4AMLK + O(K) [5]. The proposed method for small
g can maintain the computational simplicity of the PASTd. One
drawback of the PASTd and proposed method is that the orthogo-
nality between the columns of W (n) is not assured. Some solutions
have been proposed to combat the problem like in [8], and note that
we can apply the orthogonalization scheme to the mentioned sub-
space trackers in a straightforward manner.

3.3 Convergence Analysis

In this section, we discuss the steady-state convergence of mean and
mean-square behaviors to determine the appropriate coefficients
{po,-+,pq} of the polynomial P(z~1) in (15), regarding the pro-
posed adaptive algorithm. This analysis is made by the similar



approach to the steady-state stability of the recursive least square
(RLS) [9]. Thus, it is assumed that wj(n) is equivalent to the true
impulse response changing in the (q— 1)th order function of time,
and activated by the AWGN v(n) as

1

wi(n) = mv(n).

(19)

First we consider the steady-state mean behavior E[w;i(n)], where
wi(n) = wi(n) — wj(n). From (8), the output error e;j(n) is ex-
pressed as

ei(n) = wi(n)yi(n) — (wi(n)yi(n)+n(n))
= wi(n)yi(n)—n(n), (20)

where r(n) is also the AWGN. In addition to these assumptions, the
following properties should be exploited

n

] =E[y Bl (1= p)/of @)

t=
Eli (yi(m)] =E[x (& (&} (n)xi(n)] = of,  (22)

where g2 denotes the variance of xj(n). Thus, E[Wi(n)] can be
obtained from (17) in the case of q =2 as

{1 + po(1—PB)} E[wi(n)]
= {2-p1(1-P)}-E[Wi(n-1)| -E[Wi(n—2)],  (23)

where E[v(n)] = E[n(n)] = 0. Furthermore, (23) can be modified
into the following state variable expression as

[0l o[y ] e

where @ is a block matrix consisting of the coefficients of (23).
The stability condition of the mean behavior is obtained such that
the poles of @ are all within a unit circle, by

—Po < P1<po+4/(1-PB). (25)

Next, a commonly used method for tracking assessment is the
mean-square derivation to evaluate the estimation error between the
actual weight vector w(n) of the unknown dynamic system and the

estimated weight vector ﬁ(n) of the adaptive filter [9]. Let

Po>0 ,

Ki(n) £ E[F(n)&" (n—1)] (26)

denote the covariance matrix of weight error vectors. We discuss the
condition to minimize the mean-square error, tr{E [W;i(n)%!! (n)] }
where tr{-} denotes the trace, under the assumption that the conver-
gence is assured in (25). We assume that the process noise vector
v(n) is independent of both x;(n) and n(n), and x;j(n) and n(n)
are also independent of each other. The following relations of the
correlation matrices K;(n) are obtained from (17) and (19) to (22),
as

(1+po)Ko — (2—p1)K1 + K>

2

o O
= 150 (pg-l—p%)a%-l-af, Iv, 27)

u

(14 po)K1 — (2—p1)Ko+K;
1 __o¢?

= 17 h poplo—‘éIW (28)
(1+po)K2 — (2-p1)K1+Ko=0 (29)

where fo £ (1—B)po and Pz 2 (1-B)p1, and o} and o? are
the variance of n(n) and v(n), respectively. By taking the trace of

the both sides in (27) to (29), and eliminating tr{Kj } and tr{Kj},
we obtain the following cost function g, ms(po, p1) = tr{ Ko} to be
minimized with respect to pg and p; since the mean-square deriva-
tion tr{Ko} should be small for a good tracking performance.

B M- af/of
gums(Po, P1) = Po(Po+ P1)(Po — p1+4)

n2

P2 pu)+ 2+ PR+ PR )|, (60)
Po

where we define n < 0202 /a2. Then taking the derivations, dg/
dpo = dg/dpy =0, we can give the condition on the parameters
attaining the minimum mean-square behavior as

2p1(2po -+ p1) ~ N(Po + P1—2). ©)

Note that pg = (1— ) po and p; = (1 — ) p1 are small values since
a forgetting factor 3 is very close to 1. Thus, the pg and p; to meet
the conditioin of both (25) and (31) can attain the convergence in
the case ot q = 2. The analysis in the cases of g > 3 can be also
derived in a same manner. Note that the number of the estimates
does not increase by determining these coefficients in advance.

4. NUMERICAL SIMULATIONS

To describe the effectiveness of the proposed subspace tracker, we
conduct some numerical simulations of the blind multiuser detec-
tion. In the simulation scenarios, we consider a synchronous DS-
CDMA system with four users (K = 4) and three-element uniform
linear array (ULA, and M = 3) with half wavelength interspacing,
and binary Gold codes of the processing gain L = 7 are employed as
spreading code. The source signals are modulated by BPSK through
Rayleigh fading channel independent of each user and the total sam-
ple number is set at N = 1022. The user of interest is assumed k =1
without loss of generality. The SNR of AWGN is set at 20dB to the
output of the user 1, and AZ /A2 = 10, for k = 2,3,4. We compare
the performance of the MMSED given by (6) using the proposed
subspace tracking algorithm and PASTd [5] [6]. The performance
measure is the averaged output signal-to-interference-plus-noise ra-
tio (SINR), defined as

< | (n)81 (n)]1?

|
SINR(n) = — T — - ;
No \ &1 Sk_p [l (M)3k()|2 + o | (n)|2

where Ny denotes the number of trials set at Ny = 100 through the
simulations. Assume the orthogonality between the columns of the
updated signal subspace is ensured through the orthogonalization
method proposed in [8], and we discuss only the tracking ability
of the conventional and proposed algorithms through the numerical
simulation. The initial values of the parameters are empirically set
as follows,

o Ik
W(-1) = 0Kk } x 0.3,
~ Ik
W(0) = 0ok xk } x 0.2,
e(O) = [170a"'v0}T € ril:r(la
r0) = 1001k, y(0)=1[1,---,1]" € [**F.

We consider the following two simulation scenarios: slowly and
rapidly time-varying cases. Note that we assume the number of
users K is known.

4.1 Slowly Time-varying Scenario

Fig.1 shows the performance comparison of the output SINR in the
case that the trajectory of each user’s DOA is described as Fig.1(a).



40

— 1st user ‘
— — 2nd user
3rd user
201 — 4thuser
5
h=3
o Op oLl iooosioooool
2
<
=20p
_40 i Il Il Il Il
0 200 400 600 800 1000
Number of Sample
(a) DOA trajectory of users
15

=
o
T

(=]
T

Averaged SINR [dB]
(4]

PASTd (beta=0.99)
- - PASTd (beta=0.95)
— Proposed (q=2, beta=0.95)

800 1000

_5 i i
0 200 N4u0n(%ber of Sar%%qes

(b) Performance of SINR

Figure 1: Performance comparison of SINR between the proposed
method and PASTd in slowly time-varying scenario.

A forgetting factor is set at § = 0.95 and 0.99 in the PASTd, and
B =0.95 in the proposed method with g = 2. The coefficients of the
polynomial in (13) are chosen as pp = 2.0 and p; = —1.95 to meet
the convergence conditions described in Section 3.3. From Fig.1(b),
the proposed algorithm can detect the user of interest accurately,
while the PASTd imposes compromise between high SINR and fast
convergence depending on the choice of 3.

4.2 Rapidly Time-varying Scenario

Next we evaluate the behavior in a rapidly time-varying case as
shown in Fig.2(a). Fig.2(b) illustrates the performance of the
PASTd and proposed method withq=2and q =3 (pp =1.0,p1 =
10.0, p, = —8.0). The proposed method with larger g can detect
the user of interest more precisely, even if the users rapidly move,
while the PASTd is not able to. On the other hand, the algorithm
with g = 3 shows a noisy performance compared to q = 2, since
the forepast estimate errors propagate to the present estimation in
(13) and (16). This implies g = 2 or 3 is almost sufficient to achieve
accurate and stable detection as well as computational efficiency, al-
though the sinusoidal time function theoretically requires an infinite
order of the internal model (g = ).

5. CONCLUSION

A multiuser detection scheme in rapidly time-varying scenarios
has been presented by introducing an accelerated subspace tracker
based on the internal model principle by approximately expressing
the parameter changes in terms of finite order of polynomial time
functions. One feature is that the number of estimated parameters
does not increase even if a higher-order internal model is adopted to
track users. Through some numerical simulations, we can observe
that the proposed detector improves the SINR more than up to 3dB,
compared to the PASTd algorithm [5].
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Figure 2: Performance comparison of SINR between the proposed
method and PASTd in rapidly time-varying scenario.
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