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ABSTRACT
Time selectivity of the channel causes inter-carrier inter-
ference (ICI) in orthogonal frequency division multiplexing
(OFDM), thereby degrading the system performance signif-
icantly and increasing the computational complexity of the
receiver. On the other hand, time selectivity introduces tem-
poral diversity that can be exploited to improve the perfor-
mance of the receiver. In this work, a new method is pre-
sented to compensate for the effects of time selectivity of
the channel that exploits the sparsity present in the chan-
nel convolution matrix (CCM). Here, working with time and
frequency domain samples, a low complexity iterative al-
gorithm is proposed. Simulation results show the superior
performance over the standard linear minimum mean square
error (L-MMSE) equalizer with the advantage of computa-
tional saving and temporal diversity gain.

1. INTRODUCTION

OFDM is a technology that transmits multiple low-rate sig-
nals simultaneously over a single transmission path. Low
symbol rate makes OFDM resistant to the effects of inter-
symbol-interference (ISI) caused by multi-path propagation.
The effects of ISI on an OFDM signal can be further im-
proved by the addition of a guard period to the start of each
symbol in the time domain and hence yields more robustness
to multi-path fading. The guard period is generally a cyclic
copy of the last bits of the actual data being transmitted. The
length of the cyclic prefix is kept at least equal to the channel
order; under this condition, a linear convolution of the trans-
mitted sequence and the channel is converted to a circular
convolution. Moreover, the approach enables the receiver to
use the fast Fourier transform (FFT) for OFDM implementa-
tion [1]. In OFDM the overall system bandwidth is broken
up into N orthogonal sub-carriers, the data are transmitted on
these sub-carriers resulting in a symbol rate that is N times
lower than that of a single carrier system. Orthogonal spac-
ing among the carriers prevents the demodulator from seeing
frequencies other than their own. One of the principal disad-
vantages of OFDM is that it is very sensitive to time selectiv-
ity of the channel that introduces frequency dispersion, i.e.
loss of orthogonality between the sub-carriers. Time selec-
tivity of the channel makes it difficult to benefit from the sim-
ple equalization of OFDM that requires only N computations
and degrades the bit error rate (BER) performance. Mitigat-
ing time selectivity of the channel using an L-MMSE equal-
izer is discussed in [2, 3]; the complexity of the L-MMSE
equalizer is however O(N2) and yields poor performance
which makes it impractical for large N. In [4], Philip Schniter
proposed that pre-processing the received samples by mul-
tiplying with window coefficients renders the ICI response

sparse, and thereby squeezes the significant coefficients into
the 2D + 1 central diagonals of an ICI matrix. Here, it is
found that D = fdN + 1, where fd is the Doppler shift (DS)
in the carrier frequency and N is the number of carriers used
to transmit an OFDM symbol. The complexity of this algo-
rithm also increases as the DS increases. In contrast to this
work, if we examine the time domain model of the received
OFDM signal, the CCM is already sparse and has similar
structure to that after preprocessing of the received samples
in [4]. Here, the number of non-zero elements in a row de-
pends on the length of channel taps, L, which for a wireless
channel is typically equal to 5. In higher scattering environ-
ments, channel shortening algorithms can be used to shorten
the channel length [5]. This characteristic of the CCM can
help to design a low complexity OFDM equalizer for dou-
bly selective channels. Therefore, working with both time
and frequency domain samples a low complexity iterative al-
gorithm is proposed that requires no pre-processing and the
complexity is independent of the DS.
The paper is organized as follows; in the following section
the signal model is presented. Then, in Section 3, we study
the symbol estimation that is based on an MMSE equalizer
and iterative refining. In section 4, we discuss the complex-
ity of the algorithm. Simulation results are given in section
5, followed by our conclusions in Section 6.
Notations: Bold upper case X denotes a matrix and lower
case x a vector. The n-th row and l-th column entry of a
matrix X is denoted by Xn,l . The Conjugate and conjugate
transposition of a matrix are respectively denoted by (.)∗ and
(.)H ; IN is an identity matrix of size N, and ik represents its
k− th column. Pr{.} and p{.} respectively denote the prob-
ability of the discrete and continuous event in the bracket.
E{.}, Re{.}, and 〈.〉N denote respectively statistical expec-
tation, the real part of a complex number and the modulo-N
operation. Finally, we use {x(n)} to denote the sequence x(n)
of N symbols where n = 0,1, · · · ,N− 1 and Cov[x(n),y(n)]
to denote the covariance between x(n) and y(n).

2. PROBLEM STATEMENT

The basic baseband OFDM transmission and reception
model is given in Figure 1. First of all a data block of N sym-
bols is converted into the time domain by taking its inverse
FFT (IFFT). Before transmission a cyclic prefix is appended
at the beginning of the time samples. The whole block of data
is termed as an OFDM symbol. At the receiver the cyclic
prefix is removed from the received time samples and the
FFT is performed to convert the time domain samples into
the frequency domain samples. If the symbols {s(k)} are
i.i.d and {x(n)} are the corresponding time domain samples
after performing the IFFT, then the relationship between x(n)
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Figure 1: A basic baseband OFDM system, transmitting sub-
sequent blocks of N complex data.

and s(k) can be described by the following N-point inverse
discrete Fourier transform (DFT) operation

x(n) =
1√
N

N−1

∑
k=0

s(k)e j 2π
N kn. (1)

The time domain samples, {x(n)}, in vector form can be writ-
ten as x = FHs, where F is the DFT matrix of size N. We
assume that the signal x(n) has propagated through L differ-
ent paths and the sampling rate is equal to the symbol trans-
mission rate. The received baseband signal at time n after
removing the cyclic prefix can be written as

r(n) =
L−1

∑
l=0

h(n, l)x(〈n− l〉N)+ v(n), (2)

where h(n, l) is the unknown complex channel gain (CG) for
the lth channel tap and v(n) is the complex white Gaussian
noise with variance σ2 at sample time n. The estimation
of linear time-variant (LTV) and linear time-invariant (LTI)
channels is discussed respectively in [3] and [6]. Here,
throughout this paper we assume perfect knowledge of CGs.
The time domain received samples in vector form can be
written as

r = Hx+v = HFHs+v (3)

where H is the CCM and Hn,l = h(n,〈n− l〉N). After per-
forming the FFT on (3) the frequency domain received sam-
ples can be written as

γ = FHFHs+Fv = Hd f s+Fv. (4)

In (4), if the channel is LTI then the matrix Hd f will be diag-
onal and to find the L-MMSE equalizer for the estimation of
symbols {s(k)} will require the inverse of a diagonal matrix,
which is computationally inexpensive. But, if the channel is
LTV then the matrix Hd f will no longer be diagonal, which
thereby introduces ICI. Now an L-MMSE equalizer will re-
quire the inversion of an N×N Hermitian matrix that needs
O(N2) operations that is infeasible for large N and yields
poor BER performance [3]. However, as shown in Figure
2, if modulo-N indexing is assumed then the structure of H
reveals that the time domain sample x(n) contributes only to
the observation samples r(n) to r(n+L−1). Therefore, these

are the only samples required to estimate x(n) and in vector
form they can be written as, rn = Hnx+vn where

rn = [ r(n) r(n+1) · · · r(n+L−1) ]T ,

Hn =




Hn,0 Hn,1 · · · Hn,N−1
Hn+1,0 Hn+1,1 · · · Hn+1,N−1

... · · · · · · ...
Hn+L−1,0 Hn+L−1,1 · · · Hn+L−1,N−1


 ,

and vn = [ v(n) v(n+1) · · · v(n+L−1) ]T . Note that
in Hn matrix Hn,p = 0 when p≥ L .

L


L-1


Figure 2: Diagonal structure of the time-domain CCM H.

3. SYMBOL ESTIMATION

Our goal is to estimate the transmitted symbols, {s(k)}, how-
ever, their direct estimation is computationally expensive and
yields poor BER performance. In this work, an indirect ap-
proach is used, first the time domain samples, {x(n)}, are
estimated and then used to maximize the a posteriori values
of symbols {s(k)} with an iterative algorithm.

3.1 MMSE Equalizer
To estimate the samples {x(n)} an MMSE equalizer is used.
Since the noise is uncorrelated E{vn} = 0, E{vnvn

H} =
σ2IL and E{x(n)vn} = 0. The MMSE equalizer wn, of
length L for the soft estimates of x(n) can be derived by min-
imizing the cost function

J(wn) = E{(x(n)−wH
n rn)(x(n)−wH

n rn)H},
which yields the equalizer coefficient values (when x̄(n) 6= 0)
given by [7]

wn =
(
HnCov(x,x)HH

n +σ2IL
)−1

HnCov(x,x(n)) (5)

and the estimate x̂(n) = x̄(n)+wH
n (rn−Hnx̄), (6)

where x̄(n) = E{x(n)}, and x̄ = E{x}. Equations (5) and (6)
can be used to estimate the values of x̂(n). If we know the
samples {x(n)} then the symbol s(k) can be found as

s(k) = iHk Fx = iHk F
N−1

∑
n=0

inx(n)

therefore the equalizer can be translated in terms of the co-
variance of s to yield

wn =
(
HnFHCov(s,s)FHH

n +σ2IL
)−1

HnFHCov(s,s)Fin. (7)



Similarly, the estimate of s(k) becomes

ŝ(k) = iHk F
N−1

∑
n=0

inx̂(n)

= iHk F
N−1

∑
n=0

in
[
x̄(n)+wH

n (rn−Hnx̄)
]

= s̄(k)+ iHk F
N−1

∑
n=0

inwH
n (rn−HnFH s̄). (8)

If we suppose that V be the vector of dimension N × 1 of
frequency domain noise samples then,

vn =




iHn
iHn+1

...
iHn+L−1


FHV = ΛnFHV

Let Q = F∑N−1
n=0 inwH

n HnFH and P = F∑N−1
n=0 inwH

n ΛnFH

then (8) can be written as

ŝ(k) = s̄(k)+ iHk Q(s− s̄)+ iHk PV . (9)

3.2 Iterative Algorithm
We are interested in finding the a posteriori values of {s̄(k)}
and {Cov[s(k),s(k)]} to use in (5) and (6). To find these val-
ues the following important steps are highlighted to apply the
proposed iterative algorithm.
Step 1: Estimates {x̂(n)} are obtained using (7) and (6).
Step 2: To obtain the frequency domain estimates, {ŝ(n)},
the FFT is performed on samples {x̂(n)}.
Step 3: In order to determine the a posteriori values of
{s̄(k)} and {Cov[s(k),s(k)]} log-likelihood ratios (LLR)s of
{ŝ(k)} are found. The a priori and a posteriori LLR of s(k)
are defined as [8]

L[s(k)] = ln(Pr{s(k) = 1}/Pr{s(k) =−1}) and
L[s(k)|ŝ(k)] = ln(Pr{s(k) = 1|ŝ(k)}/Pr{s(k) =−1|ŝ(k)}).
The difference between the a posteriori and a priori LLR of
s(k) is

4L[s(k)] = L[s(k)|ŝ(k)]−L[s(k)]

= ln
p{ŝ(k)|s(k)=1}

p{ŝ(k)|s(k)=−1}
= L[ŝ(k)|s(k)] (10)

In order to find L[ŝ(k)|s(k)], we assume that the prob-
ability density function (PDF) of ŝ(k) is Gaussian
with variance σ 2

s and can be written as p{ŝ(k)} ≈
exp

(
− (ŝ(k)−E{ŝ(k)})(ŝ(k)−E{ŝ(k)})H

σ2
s

)
. Therefore the condi-

tional PDF of ŝ(k) (when the transmitted signal s(k) = b)

becomes p{ŝ(k)|s(k)=b} ≈ exp
(
− (ŝ(k)−mk(b))(ŝ(k)−mk(b))H

σ2
s |s(k)=b

)
.

Where mk(b) = E{ŝ(k)|s(k)=b} and σ2
s |s(k)=b =

Cov[ŝ(k), ŝ(k)|s(k)=b] are respectively the conditional mean
and covariance of ŝ(k), for a BPSK system b = {+1,−1}.
Note E{s|s(k)=b} = E{s+ ik(b− s(k))} = s̄+ ik(b− s̄(k)),
therefore from (9)

E{ŝ(k)|s(k)=b} = E{iHk Q(s− ik(s(k)−b)− s̄)}
= Qk,kb+ s̄(k)(1−Qk,k). (11)

The a posteriori LLR L[s(k)|ŝ(k)], should not depend on the
a priori LLR L[s(k)]. Therefore, we set L[s(k)] = 0 when
finding the a posteriori LLR of s(k) that yields s̄(k) = 0 and
Cov[s(k),s(k)] = 1. Moreover, it can be noted that mk(b)
depends on the particular value of b. Similarly, it can be
shown that the conditional variance of ŝ(k) becomes,

σ2
s |s(k)=b = E{(ŝ(k)−mk(b))(ŝ(k)−mk(b))H}

= E{(ŝ(k)−Qk,kb)(ŝ(k)−Qk,kb)H}
= E{ŝ(k)ŝ(k)H |s(k)=b}− |Qk,k|2
= iHk Q Cov(s,s)QH ik +σ2|Pk,k|2−|Qk,k|2.

Unlike the mean the variance of the estimator is indepen-
dent of b, therefore when writing variance in the sequel the
conditional value is omitted. Now we have everything for
L[ŝ(k)|s(k)], therefore

L[ŝ(k)|s(k)] = − (ŝ(k)−mk(+1))2

σ 2
s

+
(ŝ(k)−mk(−1))2

σ2
s

= 4
Re{ŝ(k)Q∗

k,k}
σ2

s
(12)

and L[s(k)|ŝ(k)] = L[s(k)]+4L[s(k)].
Step 4: Once the LLRs are obtained, the a posteriori values
for s̄(k) and Cov[s(k),s(k)] are obtained as [8]

s̄(k)|ŝ(k) = Pr{s(k) = +1|ŝ(k)}−Pr{s(k) =−1|ŝ(k)}

= tanh
(

Lpost [s(k)]
2

)
(13)

Cov[s(k),s(k)]|ŝ(k) = 1− s̄(k)2. (14)

Step 5: Performing an IFFT on the a posteriori values ob-
tained in (13) yields the a posteriori values of {x̄(n)}.
Step 6: We proceed to step 1 for the next iteration until we
obtain the desired BER or the specified number of iterations
has elapsed.

4. COMPLEXITY OF THE ALGORITHM

Although the size of matrix Hn is L × N, it con-
tains only 2L − 1 non-zero columns. In each it-
eration to find the equalizer coefficient values,
wn, the algorithm requires the computation of
(HnFHCov(s,s)FHH

n + σ2IL)−1HnFHCov(s,s)Fin.
The computation of FHCov(s,s)F requires NlogN oper-
ations and must be performed once per iteration, given
FHCov(s,s)F the computation of HnFHCov(s,s)FHH

n
and HnFHCov(s,s)Fin requires respectively O(L2)
and O(L) operations, and each must be performed
N times per iteration. The size of the matrix
(HnFHCov(s,s)FHH

n + σ 2IL)−1 is L × L and it is
Hermitian, therefore it will require O(L2) operations to
be performed N times per iteration. In order to estimate
x̂(n), the computation of Hnx̄ requires O(L2) operations
and must be performed N times per iteration. In order to
find the a posteriori values of Cov[ŝ(k), ŝ(k)] the values of
Qk,k and Pk,k;k = 0,1, ...,N − 1 are required and can be
computed explicitly from the expressions for Q and P in
the computations of O(LN) or O(NlogN) [9]. Hence, to
estimate N symbols, we only require (O(NlogN)+O(NL2))
operations.



5. SIMULATION

In this section, we compare the performance of our low
complexity MMSE-iterative algorithm with the L-MMSE
equalizer [3]. The number of sub-carriers is chosen to be
N = 32 and the length of the cyclic prefix is equal to the or-
der of the channel. We use a 4-tap wireless fading channel
model in which each channel tap is represented by a complex
Gaussian random process independently generated with the
Doppler spectrum based on Jakes’ model. Here, we assume
∑L−1

l=0 σ2
l = 1, where σ2

l is the variance of the lth path. The
frequency domain transmitted signals, {s(k)}, are assumed
to be BPSK. In order to see the benefits of employing the
proposed iterative method, bit and symbol error rate perfor-
mances are compared with the L-MMSE equalizer in Fig. 3
and 4. For an LTI channel, the L-MMSE equalizer yields
the optimum performance. Since the channel changes very
slowly for low Doppler shift, the performances for the itera-
tive and L-MMSE equalizers are essentially identical, as can
be seen from Fig. 3 and 4. But, as significant Doppler shift
introduces significant time selectivity into the channel, the
proposed algorithm outperforms the L-MMSE equalizer and
provides time diversity gain.

6. CONCLUSIONS

We considered the design of a low complexity iterative re-
ceiver for the doubly selective environment. The simulation
results support the expected superiority of the proposed iter-
ative scheme over the L-MMSE equalization that is not only
computationally expensive but has poor performance. On the
other hand, unlike the iterative method proposed in [4], the
computational complexity of our proposed algorithm is in-
dependent of DS and does not require any preprocessing and
can work for a large range of DS without increasing the com-
putational complexity. It also yields the time diversity benefit
in LTV channels.
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iterative algorithm with the L-MMSE equalizer up to five
iterations and at different DS.
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