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ABSTRACT

This paper introduces a novel representation of speech for
the cases where the speech signal is corrupted by additive
noises. In this method, the speech features are computed by
reducing additive noise effects via an initial filtering stage
followed by the extraction of autocorrelation spectrum
peaks.

A task of speaker-independent isolated-word recognition
was used to demonstrate the efficiency of these robust
features. The cases of white noise and colored noise such as
factory, babble and car noises were tested. Experimental
results show significant improvement in comparison to the
results obtained using traditional feature extraction
methods.

1-INTRODUCTION

Noise robustness is one of the most challenging problems
in automatic speech recognition. The performance of ASR
systems, trained with clean speech, may drastically degrade
in real environments. The main reason for this degradation
is the acoustic mismatch between the training and test
environments due to environmental effects. The goal of
robust speech recognition is to improve the performance of
speech recognition in such adverse environments.

The environmental effects are often determined by noise
and channel distortion. Noise is additive in spectral domain
while channel distortion is multiplicative and therefore
appears as additive in logarithmic spectral domain.

An obvious approach to attack the effects of environment is
to have a separate training set for each noise type.
However, this approach is not practical due to large
diversity of noise types encountered in a real environment.
In order to remove the effect of noise, some methods have
been found useful and extensively mentioned in the
literature such as SS (Spectral Subtraction), NSS (Non-
linear spectral subtraction) [1], Lin-log RASTA (Linear-
logarithmic RelAtive SpecTrA) [2], DPS (Differentiated
Power Spectrum) [3], PMC (Parallel Model Combination)
[4] and MVDR (Minimum Variance Distortionless
Response) [5].

Furthermore, for suppressing the channel distortion, various
techniques have been developed such as CMN (Cepstral
Mean Normalization), RASTA (RelAtive SpecTrAl) [2] and
BE (Blind Equalization) [6].

Recently, the parameters extracted using an autocorrelation
sequence of the noisy signal have been found useful for
robust speech recognition. Some examples include
magnitude spectrum of higher lag autocorrelation
coefficients [7] and RAS (Relative Autocorrelation
Sequence) method [8, 9]. Furthermore, according to [10],
preserving spectral peaks is very important in obtaining a
robust set of features in speech recognition.
We propose a new approach utilizing peaks obtained from
autocorrelation spectrum of speech signal. Using such an
approach, we found the following results for
autocorrelation domain.

1. If our signal is periodic, the autocorrelation will be

periodic.
2. Autocorrelation spectrum can well replace signal
(power) spectrum for further processing.

Hence, differentiating in autocorrelation spectral domain
will preserve autocorrelation spectral peaks, except that
each peak is split into two, one positive and one negative.
This is similar to what is done in DPS in the spectral
domain due to the importance of the spectral peaks.
Therefore, we propose the following front-end description
for noise robust feature extraction.
Firstly, we calculate the autocorrelation of the noisy signal.
If the temporal autocorrelation of noise is a DC or slowly
varying signal, its effect can be suppressed by a high-pass
filter, such as RAS filter [8, 9]. Then, following the DPS
concept, autocorrelation spectrum is differentiated with
respect to frequency. Finally, from the magnitude of
differentiated autocorrelation spectrum, we will get a set of
cepstral coefficients by passing it through a mel-frequency
filter-bank and later to a block of DCT (Discrete Cosine
Transform). One can expect this method to remove the
noise effects in autocorrelation domain by filtering and
differentiating the spectrum.

2-COEFFICIENTS DERIVED IN
AUTOCORRELATION DOMAIN

If w(t) is the ambient noise and x(z) the noise-free speech
signal, then noisy speech signal y(z) can be modeled as

y(&) = x(2) + w(?) (1
Speech signal is time-variant and non-stationary. Therefore,
it is usually analyzed on the discrete domain. Thus we have
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Figure 1. Block diagram of the proposed DAS front-end for robust feature extraction.

y(m,n) =x(m,n)+w(m,n)
0<n<N-1, 0<ms<M-1 2)
where N is the frame length, # is the discrete time index in a
frame, m is the frame index and M is the number of frames.
If the noise is uncorrelated with speech, the autocorrelation
of the noisy speech is the sum of the autocorrelation of the
clean speech x(m,n) and the noise w(m,n).

r,(m,k) =r.(m,k)+r, (m,k)
0<m<M-1 0<k<N-1 3)
where 7, (m,k),r.(m,k) and r,(m,k) are the short-time

autocorrelation sequences of the noisy speech, clean speech
and noise, respectively.

If the noise is stationary, differentiating both sides of (3)
with respect to m and simplifying yields [8]:

6ry(m,k)~ 1 <&

= — tr.(m+tk
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0<m<M-1 , 0<k<N-1 @)

L
T, =Y¢
t=—L

Equation (4) is a filtering process on the temporal
autocorrelation trajectory by high-pass FIR Filter. In our
experiments we have chosen L=2.

In this step, if the autocorrelation trajectory of noise is DC
or slowly varying, its effect will be suppressed. Therefore,
if we calculate the autocorrelation of signal after this
filtering, we will get a cleaner signal, compared to the
original noisy signal. After this cleaning step, we can use
peaks of autocorrelation signal for feature extraction by
differentiating the Fourier transform of autocorrelation of
the signal. Thus, if we call the output of the filtering stage
in time domain z(n), we can write

z(n)=x(n)+v(n) 0<n<N-I &)

where

where x(n) and v(n) are clean speech and the remaining
noise after filtering, respectively. Then, we calculate the
autocorrelation function as follows

r,(t)=r.(t)+r,(7) 0<z<N-1 (6)
Applying the Fourier transform to both sides of (6) yields

Flr ()} = Fir (o)} + Fir, ()} (7
or
Z(k)=X(k)+V (k) ®)
By differentiating both sides of (8):

»
D.(ky~ Y bZ(k+1)
1=—0

P
~ Zb, [X(k+D)+V(k+D]=D (k)+D,(k) (9
I=—P
Now differentiation can be carried out in several ways, as
discussed in [3]. The simple difference given in (10) has
been reported as the best approach and therefore used here.

D(k)=Z(k)-Z(k+1) (10)
Our proposed method is different from RAS method as we
have used the peaks of autocorrelation spectrum found in
frequency domain, while it differs DPS in filtering at
cleaning step before differentiating the autocorrelation
spectrum of the signal. We will call our new features as
DAS (Differentiation of Autocorrelation Sequence). The
front-end diagram of DAS method is shown in Figure 1.

4-EXPERIMENTS

The speech corpus used in these experiments is a speaker-
independent isolated-word Farsi (Persian) corpus. The
corpus was collected from 65 male and female adult
speakers uttering the names of 10 Iranian cities. The data
was collected in normal office conditions with SNRs of
25dB or higher and a sampling rate of 16 kHz. Each
speaker uttered 5 repetitions of words, some of which were
removed from the corpus due to problems that occurred
during the recordings. A total of 2665 utterances from 55
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Figure 2. Recognition results for speech signal contaminated with (a) babble, (b) car, (c) factory and (d) white noises in
different SNRs. The results correspond to MFCC, MFCC+CMN, DPS+CMN, RAS and DAS+CMN methods.

speakers were used for HMM model training. The test set
contained 10 speakers (5 male & 5 female) that were not
included in the training set. The noise was then added to the
speech in different SNRs. The noise data was extracted
from the NATO RSG-10 corpus [11]. We have considered
babble, car, factoryl and white noises and added them to
the clean signal at 20, 15, 10, 5, 0 and -5 dB SNRs.

Our experiments were carried out using MFCC (for
comparison purposes), Spectral Subtraction, RAS-MFCC,
DPS and our method (DAS). The features in all cases were
computed using 25 msec. frames with 10 msec. of frame
shifts. Pre-emphasis coefficient was set to 0.97. For each
speech frame, a 24-channel Mel-scale filter-bank was used.
Each word was modeled by an 8-state left-right HMM and
each state was represented by one Gaussian PDF. The
feature vectors were composed of 12 cepstral and a log-
energy parameter, together with their first and second
derivatives (39 coefficients in total).

Figure 2 depicts the results of our implementation. Also in
Table 1 the baseline clean results are included for
comparison purposes and in Table 2 the average noisy
speech recognition results obtained are displayed. The
average values mentioned in Table 2 are calculated over the
results obtained from 0 dB to 20 dB SNRs, omitting the
clean and -5 dB results. This is the way the average results
are calculated in Aurora 2 task [12]. The values given in
parentheses are the improvements obtained relative to the
baseline system. Note that also for comparison purposes,
the results of an implementation of spectral subtraction as
an initial enhancement method, applied before standard
MFCC parameter extraction, are included. These are
denoted by SS and the algorithm was applied as explained
in [13]. As can be seen in Figure 2, DAS method
outperforms all the other methods in almost all noise types
and SNRs. The average results on different SNRs, as shown
in Table 2, are again considerably better for DAS in



comparison to other feature extraction techniques. As an
example, DAS has about 30% reduction on the average
word error rate, compared to DPS, which performs the best
among the others. Similar results can be seen on this table
for factory and white noises.

5-CONCLUSION

In this paper, cepstral features derived from autocorrelation
spectral domain were proposed for improving the
robustness of ASR systems. The concept of DAS
introduced a new set of cepstral features for improving the
robustness of speech recognition. We note that just like the
RAS and DPS methods, our method can preserve spectral
information for speech recognition, while outperforming
both RAS and DPS methods due to its two-step noise effect
suppression approach. Furthermore, this method works well
for different types of noises including white, babble, car
and factory noises.

Future works may include the application of an improved
filter to the autocorrelation parameters, in place of the
current RAS filter.

Tablel. Comparison of clean-train/clean-test recognition
rates for various feature types .

Feature type | Recognition Rate
MFCC 96.60
SS 96.60
MFCC+CMN 99.20
DPS+CMN 99.20
RAS-MFCC 90.20
DAS+CMN 99.20
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Table2. Comparison of average recognition rates for various feature types with babble, car, factory and white noises.

Average Recognition Rate
Feature type -
Babble Car Factoryl White
MFCC (Baseline) 63.60 89.44 57.92 38.68
SS 51.60 (-18.87) | 78.88 (-11.81) | 52.72 (-8.98) 43.88 (13.44)
MFCC+CMN 66.00 (3.78) 91.00 (1.74) 59.24 (2.28) 45.08 (16.55)
DPS+CMN 77.28 (21.51) 99.24 (10.96) 77.84 (34.39) 71.84 (85.73)
RAS-MFCC 67.04 (5.41) 90.56 (1.25) 66.40 (14.64) 44.44 (14.89)
DAS+CMN 83.88 (31.89) 99.12 (10.82) 82.80 (42.96) 76.36 (97.41)
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