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ABSTRACT

This paper addresses asymptotically (in the number of mea-
surements) minimum variance (AMV) estimators within the
class of estimators based on a mixture of real and complex-
valued sequence of statistics whose first covariance of its as-
ymptotic distribution is singular. Thanks to two conditions,
we extend the standard AMV estimator. We prove that these
conditions are satisfied for the estimates of orthogonal pro-
jection matrices used in subspace-based algorithms. Finally,
we illustrate our findings for subspace-based algorithms in
the DOA estimation for complex noncircular signals.

1. INTRODUCTION

The methods of moments is very common in parameter es-
timation and have been applied successfully to a variety of
problems in signal processing. To provide a benchmark for
the efficiency of existing algorithms based on these moments,
AMV estimators in the class of consistent estimators have
been considered. Stoica et al [2] with their asymptotically
best consistent estimator (ABC) and Porat and Friedlander
[3] were the first to derive such estimators for estimating the
ARMA parameters of real-valued Gaussian processes from
second-order statistics. Then, this approach was extended to
high-order statistics [4] and to complex noncircular signals
[5], and has been used to blind channel identification and
DOA estimation among many other applications. In all these
cases, the derivation of the AMV estimator is supported by
the assumption that the covariance (first covariance matrix
for complex-valued statistics) matrix of the asymptotic distri-
bution of the involved statistics is nonsingular. But in many
applications such that the subspace-based algorithms where
the involved statistics are estimates of orthogonal projection
matrices, this covariance matrix is singular.

The aim of this contribution is to extend the standard
AMV results to the mixture of real and complex-valued se-
quence of statistics when this first covariance matrix is sin-
gular. In Section 2, subspace-based algorithms for estimat-
ing DOA in the context of complex non-circular signals are
presented as a motivating and illustrating example for this
study. Section 3 extend the standard AMV results when the
involved statistics satisfy two conditions with a special atten-
tion to projectors. Finally, Section 4 serves to illustrate our
findings for subspace-based algorithms in the DOA estima-
tion for complex noncircular signals.

2. MOTIVATING EXAMPLE

Let an array of M sensors receive the signals emitted by K
narrowband sources. The observations are modelled as

yt = Axt +nt , t = 1, . . . ,T,

where (yt)t=1,...,T are i.i.d. A = [a1, . . . ,aK ] where ak is pa-
rameterized by the scalar parameter q k. xt = (xt,1, . . . ,xt,K)T

and nt model signals transmitted by sources and additive
measurement noise respectively. xt and nt are indepen-
dent, zero-mean, nt is assumed Gaussian complex circu-
lar, spatially uncorrelated with E(ntnH

t ) = s 2
n IM , while xt

is complex noncircular, not necessarily Gaussian and possi-
bly spatially correlated with nonsingular covariance matri-

ces Rx
def= E(xtxH

t ) and R′
x

def= E(xtxT
t ). Consequently this

leads to two covariance matrices of yt that convey informa-

tion about Q def= (q 1, . . . , q K)T :

Ry = ARxAH + s 2
n IM and R′

y = AR′
xA

T 6= O,

where we suppose that Q is identifiable from Ry or R′
y.

These covariance matrices are classically estimated by
Ry,T = 1

T å T
t=1 ytyH

t and R′
y,T = 1

T å T
t=1 ytyT

t , respectively.

The first idea1 to estimate Q from Ry,T and R′
y,T is to

use similar subspace-based algorithms derived from the pro-
jection matrices Πy,T and Π′

y,T associated with the common
noise subspace of Ry,T and R′

y,T . For example, the asymp-
totic performance of the estimates given by the standard MU-
SIC algorithm and a MUSIC-like algorithm based on Πy,T
and Π′

y,T respectively are similar. In particular for only one
source, the asymptotic variance are given by [6]:
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with a 1 is a purely geometric factor and where r 1 (0 ≤
r 1 ≤ 1) is the noncircularity rate defined by E(x2

t,1) =
r 1eif 1E|x2

t,1| = r 1eif 1 s 2
1 . Consequently a problem crops up:

how to combine the statistics Πy,T and Π′
y,T to improve the

estimate of Q ?
Another idea to estimate Q from Ry,T and R′

y,T is to use
subspace-based algorithms derived from the projection ma-
trix Πỹ,T associated with the noise subspace of the sample

covariance matrix Rỹ,T of the extended observation ỹt
def=

(yT
t ,yt

H)T . Efficient subspace-based algorithms based on
Πỹ,T have been proposed and analyzed in [6] in the particular
case of uncorrelated sources with maximum noncircularity
rates. However in the general case of arbitrary extended spa-
tial covariances (Rx and R′

x) of the sources, only weighted
MUSIC-like algorithms seem to take benefit of the second
covariance matrix R′

y,T . But the asymptotic performances
of these estimates are largely outperformed by those of the
AMV estimator based on Ry,T and R′

y,T [6]. Therefore a
question arises as well: Does there exist an algorithm based

1Note that [1] was to the best of our knowledge, the first contribution that
proposed an algorithm taking into account the noncircularity.



on the projector Πỹ,T whose performances approach those of
the AMV estimator based on Ry,T and R′

y,T ?
A solution of the two aforementioned problems is to

use the notion of AMV estimators respectively based on
the matrix-valued statistics (Πy,T ,Π′

y,T ) and Πỹ,T . But to
apply the standard results [4] on AMV estimators to these
projectors, two conditions must be satisfied. First, the in-
volved subspace-based algorithm considered as a mapping
must be complex differentiable w.r.t. (Πy,T ,Π′

y,T ) [resp.
Πỹ,T ] at the point (Πy,Π′

y) [resp. Πỹ]. Second, the first
covariance matrix Cs(Q ) of the asymptotic distribution of

sT
def= vec(Πy,T ,Π′

y,T ) [resp. sT
def= vec(Πỹ,T )] must be non-

singular. While the first condition is satisfied because the
projection matrices are Hermitian, it will be specified in Sec-
tion 3.2, that the second is not satisfied. So we have to elab-
orate a little bit.

3. ASYMPTOTICALLY MINIMUM VARIANCE
ESTIMATOR

3.1 Arbitrary sequence of statistics

Consider a general N-multidimensional mixture of real and
complex-valued sequence of statistics sT which is a consis-
tent estimate of s(Q ) for which the real-valued parameter
Q ∈ RK is identifiable from s(Q ). We suppose that sT is as-
ymptotically zero-mean Gaussian distributed where the first
covariance matrix Cs(Q ) is possibly singular:

√
T (sT − s(Q )) L→Nc

(
0;Cs(Q ),C′

s(Q )
)
.

To consider the asymptotic performance of an algorithm
based on sT , we adopt a functional analysis which con-
sists in recognizing that the whole process of constructing
an estimate Q T of Q is equivalent to defining a functional
relation linking this estimate Q T to the statistics sT from
which it is inferred. This functional dependence is denoted
sT 7−→ Q T = Alg(sT ). Considering a mapping Alg(.) differ-
entiable w.r.t. (´ (s), ` (s)), we prove the following theorem.

Theorem 1 The covariance matrix CQ of the asymptotic
distribution of an estimator of Q given by an arbitrary al-
gorithm based on sT is bounded below by the real symmetric
matrix

(
S HC#

s (Q )S
)−1 2

CQ ≥
(
S HC#

s (Q )S
)−1

(1)

if the following two conditions hold

Span(S )⊂ Span(Cs(Q )) and s∗T = KsT (2)

where K is an arbitrary permutation matrix and S
def= ds(Q )

dQ .

Proof: The second condition implies that s∗(Q ) = Ks(Q )
and proves that any mapping Alg(.) differentiable w.r.t.
(´ (s), ` (s)) becomes differentiable w.r.t. s alone and con-
sequently the identifiability condition implies the constraint
DAlg

s S = IK for the Jacobian matrix DAlg
s of this mapping

at the point s(Q ) of an arbitrary estimate of Q based on
sT (see [5]). Consequently rank(S ) = K and because

2The superscript # denotes the Moore Penrose inverse.

CQ = DAlg
s Cs(Q )(DAlg

s )H , the proof comes down to mini-
mizing DCs(Q )DH w.r.t. D under the constraint DS = IK .
Consider the eigenvalue decomposition UΣUH of the
rank-r singular matrix Cs(Q ) where U is an N × r unitary
matrix with r < N. The condition Span(S )⊂ Span(Cs(Q ))
is equivalent to S = US

′
where S

′
is a r× K matrix.

And the previous minimization becomes equivalent to

minimizing D
′
ΣD

′H
w.r.t. D

′ def= DU under the constraint
D

′
S

′
= IK , where here, Σ is nonsingular. This minimiza-

tion is standard for real-valued statistics (see e.g., [4]). It
has been extended for a mixture of real and complex-valued

statistics in [5], and the minimum is (S
′H

Σ−1S
′
)−1 =

(S
′H

UHUΣ−1UHUS
′
)−1 =

(
S HC#

s (Q )S
)−1

.

Remark 1: The second condition (2) holds for Hermitian
matrix-valued statistics. For complex symmetric matrix-
valued statistics, the complex conjugate associated terms
must be added.
Remark 2: In the trivial case where there are r linear re-
lations between the components of sT with N − r compo-
nents statistically uncorrelated, there exists an N × (N − r)
matrix B such that sT = Bs′T with Cov(s′T ) nonsingular.
Consequently Span(S ) ⊂ Span(B) and Span(Cov(sT )) =
Span(B). Therefore first condition (2) holds.
Remark 3: In their discussions about the generalization of
the optimal weighted subspace fitting approach, Cardoso
and Moulines [7] have introduced a range space condition
different from condition (2), and they have derived (1) as a
lower bound to the covariance of the asymptotic distribution
of weighted subspace fitting estimates.

Furthermore, under the assumptions of theorem 1, we
prove that this lowest bound is asymptotically tight, i.e., there
exists an algorithm Alg(.), whose covariance of the asymp-
totic distribution of Q T satisfies (1) with equality.

Theorem 2 The following nonlinear least square algorithm
is an AMV algorithm based on sT .

Q T = arg min
a ∈RK

[sT − s(a )]HC#
s (a )[sT − s(a )]. (3)

Proof: By a perturbation analysis, Q T = Q +
d Q T is associated with sT = s(Q ) + d sT . If

V (a ) def= [s(Q ) − s(a )]HC#
s (a )[s(Q ) − s(a )] and

VT (a ) def= [sT − s(a )]HC#
s (a )[sT − s(a )], we have:

dV (a )
da |a =Q = 0 and dVT (a )

da |a =Q +d Q T
= 0. Expand-

ing these two derivatives, we straightforwardly obtain:(
S HC#

s (Q )S +S T C#
s (Q )∗S ∗) d Q T + o(d Q T ) =

S HC#
s (Q )d sT + S T C#

s (Q )∗d s∗T + o(d sT ). Consequently
algorithm (3) satisfies:

d Q T =
(
S HC#

s (Q )S +S T C#
s (Q )∗S ∗)−1

(
S HC#

s (Q ),S T C#
s (Q )∗

)(
d sT
d s∗T

)
+o(d sT )

=
(
S HC#

s (Q )S
)−1

S HC#
s (Q )d sT +o(d sT ),

by using S ∗ = KS and (C#
s (Q ))∗ = KC#

s (Q )KT

in the second equality. Consequently, the Jaco-
bian of the mapping Alg(.) involved by (3) is



DAlg
s =

(
S HC#

s (Q )S
)−1

S HC#
s (Q ) and CQ =

DAlg
s Cs(Q )(DAlg

s )H = (S HC#
s (Q )S )−1.

3.2 Application to projectors

This subsection is concerned with general properties of
subspace-based algorithms in the context of the generic
model: yt = A(Q )xt + nt , where (yt)t=1,...,T are i.i.d.,
xt and nt are zero-mean and independent, nt is as-
sumed Gaussian complex circular, spatially uncorrelated
with E(ntnH

t ) = s 2
n IM , while xt is complex noncircular,

not necessarily Gaussian with Rx nonsingular. We assume
that rank(A(Q )) = L < M and that the real-valued parame-
ter Q ∈ RK is uniquely determined by the range space of
A(Q ). Therefore Q is uniquely determined by the com-
mon projector Πy onto the noise subspace associated with
Ry = Rs + s 2

n IM and R′
y = R′

s 6= O as well. To the extended

observation ỹt
def= (yT

t ,yt
H)T , Rỹ

def= E(ỹt ỹH
t ) = Rs̃ + s 2

n I2M
where we suppose here that Rx̃ is nonsingular.

Consequently, Q is also determined by the orthogonal
projector Πỹ onto the 2L-dimentional noise subspace of ỹt .
Thus we can consider the orthogonal projector Πy,T , Π′

y,T
and Πỹ,T onto the noise subspace of the sample covariance
matrices Ry,T , R′

y,T and Rỹ,T respectively.

To prove that the first covariance matrices Cs of the
asymptotic distribution of the statistics sT = vec(Πy,T ),
vec(Πy,T ,Π′

y,T ) and vec(Πỹ,T ) are singular, we need the fol-
lowing lemma proved in [6]:

Lemma 1 The covariance CP and C ˜P are given by

CP = (Π∗
y ⊗U)+(U∗⊗Πy) (4)

C ˜P = (I+K2M(J⊗J))
(
(Π∗

ỹ ⊗ Ũ)+(Ũ∗⊗Πỹ)
)
(5)

with U def= s 2
n R#

sRyR#
s and Ũ def= s 2

n R#
s̃RỹR#

s̃ , where KL
is the vec-permutation matrix which transforms vec(.) to

vec(.T ) for any L×L square matrix and J =
(

O IM
IM O

)
.

Consequently, if we consider the eigenvalue decomposi-
tions å M

l=1 l luluH
l and å 2M

l=1 l̃ lũlũH
l of respectively Ry and

Rỹ,

CP = å
l′,l′′∈L

l l′,l′′(u
∗
l′ ⊗ul′′)(u

T
l′ ⊗uH

l′′)

C ˜P = å
l′,l′′∈L̃

l̃ l′,l′′(ũ
∗
l′ ⊗ ũl′′)(ũ

T
l′ ⊗ ũH

l′′ + ũH
l′′J⊗ ũT

l′J)

where L [resp. L̃ ] is the set {(l′, l′′) |1 ≤ l′ ≤ L < l′′ ≤
M

⋃
1≤ l′′ ≤ L < l′ ≤M} [resp. {(l′, l′′) |1≤ l′ ≤ 2L < l′′ ≤

2M ∪ 1 ≤ l′′ ≤ 2L < l′ ≤ 2M}] and the values of l l′,l′′ 6= 0
[resp. l̃ l′,l′′ 6= 0] are irrelevant.

Therefore CP , C P
P ′

def=
(

CP CP ,P ′
CH

P ,P ′ CP ′

)
and C ˜P

respectively first covariance matrices Cs of the asymptotic
distribution of the statistics sT = vec(Πy,T ), vec(Πy,T ,Π′

y,T )
and vec(Πỹ,T ) are singular.

Thanks to lemma 1 and the following lemma which is
proved in the appendix:

Lemma 2 The covariance C P
P ′

is given by

C P
P ′

=
(

KM O
O KM

)((
U U′′

U′′H U′

)
⊗Π∗

y

)

(
KM O
O KM

)
+

(
U∗ U′′∗

U′′T U′∗
)
⊗Πy. (6)

with U′ def= s 2
n R

′∗#
s R∗

yR
′#
s and U′′ def= s 2

n R#
sR

′
yR

′#
s .

We note that expressions (4), (6) and (5) of CP , C P
P ′

and

C ˜P respectively, do not depend on the fourth-order moments
of the sources, consequently we have proved the following:

Theorem 3 The asymptotic performance given by an
arbitrary subspace-based algorithm built from Ry,T ,
(Ry,T ,R′

y,T ) or Rỹ,T depends on the distribution of xt

through its second-order moments only. Furthermore, for
subspace-based algorithms built from Ry,T , this asymptotic
performance depends only on the first covariance matrix Rx.

Using these results we prove the following:

Theorem 4 The covariance matrix CQ of the asymptotic
distribution of an estimator of Q given by an arbitrary sub-
space algorithm based on the statistics Πy,T , (Πy,T ,Π′

y,T )
or Πỹ,T is bounded below by the real symmetric matrix(
S HC#

s S
)−1

where S
def= ds(Q )

dQ with s(Q ) is respectively
vec(Πy), vec(Πy,Π′

y) or vec(Πỹ).
Furthermore, the following nonlinear least square algo-

rithm is an AMV subspace-based algorithm:

Q T = arg min
a ∈RK

[sT − s(a )]HWT [sT − s(a )] (7)

where a consistent estimate WT of C#
s is available from

Ry,T , (Ry,T ,R′
y,T ) or Rỹ,T respectively.

Proof: Because these matrix-valued statistics are Hermitian,
the second condition of (2) is satisfied.

Considering the first condition of (2) for the first and third
statistics, Span(CP (Q )) = Span{u∗l′ ⊗ul′′ |l′, l′′ ∈ L } and
Span(C ˜P (Q )) = Span{ũ∗l′ ⊗ ũl′′ |l′, l′′ ∈ L̃ }. Therefore for
the first statistic, this condition is equivalent to

dvec(P y(Q ))
dq k

=
M

å
l=K+1

(
u∗l ⊗

dul

dq k
+

du∗l
dq k

⊗ul

)

⊥ {u∗l′ ⊗ul′′ | 1≤ l′, l′′ ≤ L or L < l′, l′′ ≤M}
for k = 1, ...,K and noting that u1, . . . ,uM are orthonormal,
condition (2) is straightforwardly proved for the first statis-
tic. This condition is proved in the same way for the third
statistic.

For the second statistic, using the singular value de-
compositions of U, U′ and U′′ and noting that Span(U) =
Span(U′) = Span(U′′), it is straightforward to prove that

Null space(C P
P ′

) = Span{ u∗l′ ⊗ul′′
0 ,

0
u∗l′ ⊗ul′′

| 1 ≤
l′, l′′ ≤ L or L < l′, l′′ ≤ M}} and consequently

( dT vec(P y(Q ))
dq k

,
dT vec(P y(Q ))

dq k
)T ⊥ Null space(C P

P ′
) and the

first part of condition (2) is satisfied for the second statistic.



Regarding the proof of the second part of theorem 3,
it is straightforward to show that the Jacobian DAlg

s =(
S HC#

s (Q )S
)−1

S HC#
p̃ (Q ) of the mapping Alg(.) in-

volved by (7) is preserved by following a perturbation analy-
sis similar to that of the proof of theorem 2 where WT =
C#

s (Q )+o(sT − s(q )).
Issued from the singular value decompositions of Ry,T ,

R′
y,T and Rỹ,T , consistent estimates of s 2, Πy, Πỹ, Rs, R′

s,
Rs̃ are available and consequently, consistent estimates of
C#

p , C#
P
P ′

and C#
p̃ can be derived as well.

4. ILLUSTRATIVE EXAMPLES

We consider throughout this section two uncorrelated
equipowered filtered or unfiltered BPSK modulated signals

with identical non-circularity rate (r def= r 1 = r 2) with phases
of circularity f 1 = p /2 and f 2 = p /3. These signals im-
pinge on a uniform linear array with M = 6 sensors for which
ak = (1,eiq k , . . . ,ei(M−1)q k)T .

First we note that the subspace-based algorithms cannot
take the a priori information about the signal uncorrelation
into account. Considering AMV estimators based on Ry,T or
(Ry,T ,R′

y,T ) derived in [5] and if no a priori information is
available on Rx and R′

x, we numerically find that:

CAMV(P )
Q = CAMV(R)

Q

CAMV( ˜P )
Q = CAMV(P ,P ′)

Q = CAMV(R,R′)
Q .

This property has been confirmed in the case of depen-
dent sources thanks to many experiments as well. Further-
more, we find that these bounds coincide with the stochas-
tic Cramer-Rao bounds under the circular or non-circular
Gaussian distribution respectively. But we have not suc-
ceeded in proving these different properties analytically.

In Fig.1, we realize the benefits due to the second co-
variance matrix R′

y,T through subspace-based algorithms for
non-circular signals, particularly for low DOA separations.
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as a function of the non-

circularity rate for different DOA separations for SNR = 5dB and D f =
p /6rd.

If this uncorrelation a priori information is taken into
account, Fig.2 shows the better expected benefits due
to the non-circularity, particularly for low DOA sepa-
rations. Consequently, the subspace-based algorithms
lose their good efficiency in these circumstances.
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A. APPENDIX: PROOF OF LEMMA 2

Using the following lemma proved in [6]

Lemma 3 The perturbations Ry,T = Ry + d Ry,T , R′
y,T =

R′
y + d R′

y,T and Πy,T = Πy + d Πy,T , Π′
y,T = Π′

y + d Π′
y,T

are related by the following expressions:

vec(d ΠT ) = −((Π∗
y ⊗R#

s )+(R∗#
s ⊗Πy))vec(d Ry,T )

+ o(vec(d Ry,T ))

vec(d Π′
T ) = (Π∗

y ⊗R
′∗#
s )vec(d R

′∗
y,T )

− (R
′#
s ⊗Πy)vec(d R

′
y,T )+o(vec(d R′

y,T )),
and the expression of the covariance matrices CR′y , C′

R′y ,
CRy,R′y and C′

Ry,R′y given in [5], the standard theorem (see
e.g., [8, p. 122]) on regular functions of asymptotically
Gaussian statistics applies and we straightforward obtain:

CP ′ = (Π∗
y ⊗U′)+(U

′∗⊗Πy)

CP ,P ′ = (Π∗
y ⊗U′′)+(U

′′∗⊗Πy).

Consequently, expression (6) of C P
P ′

def=
(

CP CP ,P ′
CH

P ,P ′ CP ′

)

follows.
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