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ABSTRACT
We present a method that exploits the information theoretic
framework described in [1] to extract optimal audio features
with respect to the video features. A simple measure of mu-
tual information between the resulting audio features and the
video ones allows to detect the active speaker among differ-
ent candidates. The results show that our method is able to
exploit the shared speech information contained in audio and
video signals to recover their common source.

1. INTRODUCTION

With the increasing capacities of nowadays computers, both
auditive and visual modalities of the speech signal can be
used to improve speaker detection. Such a detection could
lead to great improvements of the user-friendliness of several
man-machine interactions. Let us just consider for example
a videoconference system. For a proper job, presently one
needs an audio engineer and a cameraman so that the speak-
ing person can be emphasized both on audio and video. An
intelligent system able to detect the speaker of interest on the
basis of sound and image information could focus a moving
camera on her/him.

Among the different methods that exploit the information
contained in each modality, a few are performing the fusion
directly at the feature level. It has been pointed out in [1]
and [2] for example, that such a fusion can greatly help the
classification task: the richer and the more representative the
features, the more efficient the classifier.

Some audio-video feature fusion approaches try to di-
rectly evaluate the synchrony of the two signals [3], [4]. As
suggested in [4], the synchrony is here the perceptive effect
of the causal relationship between the two signals. Other
methods map first the features into a subspace where this re-
lationship is enhanced and can therefore be estimated [2], [5],
[6]. All the approaches rely on explicit or implicit use of mu-
tual information. An estimation of the features’probability
density function (pdf) is therefore required. Normal distribu-
tions are often assumed. However, such an a priori assump-
tion is not necessarily valid. Fisher in [2], as well as Butz in
[1], estimate the probability density functions directly from
the available samples during the feature extraction process
through Parzen windowing.

Following Butz in [1] and [7], we present here an infor-
mation theoretic approach to optimize the audio features with
respect to video features. The purpose of this method is to
detect the current speaker in a video sequence with two or
more potential candidates.

The paper is organized as follows: we first present briefly
how information theory can be used to extract optimized fea-

Figure 1: Graphical representation of the coupled Markov
chains modelling the multimodal classification process.

tures in a general multimodal classification problem. We then
describe the chosen representation for the video and audio
signals. In the third section, the information theoretic opti-
mization approach is applied to obtain audio features opti-
mized for the specific classification task, regardless the clas-
sifier. The last part of the paper is dedicated do experiments
and discussion about the ability of the method to produce au-
dio features specific to speech leading to speaker detection.

2. THEORETICAL FRAMEWORK

The detection of the current speaker in an audio-video se-
quence can be understood as a classification problem. For a
speaker, the audio and video signals originate from the same
physical source. Let O be a binary random variable to model
the membership to the ”speaker” or ”non-speaker” class with
respect to the observed audio and video signals A and V . No-
tice that, since no assumption is made on the speaker’s po-
sition, O can be considered as uniformly distributed. Let FA
and FV be the features extracted (or mapped) from A and V
respectively. They will be viewed as random variables here-
after. Then the estimates F̂A and F̂V can be obtained jointly
from FV and FA by using their joint probability estimation.
Then the classification process can be modelled by two first
order coupled Markov Chains [1] shown in Fig. (1).

The goal in such a process is obviously to minimize
the probability of assigning the measurement to the wrong
class. That is, to minimize the classification error probability
Pe = P(Ô 6= O) associated to each Markov Chain. Using
Fano’s inequality and Shannon’s entropy, a lower bound on
the classification error Pe can be defined for each Markov
Chain [1]:

Pe1 >1− I(FA, F̂V )+1
log |ΩO| and Pe2 >1− I(FV , F̂A)+1

log |ΩO| , (1)

where I is the Shannon’s mutual information and |ΩO|, the
cardinality of O which is supposed to remain constant (only
two classes in all cases). The best achievable classification
error probability Pe is conditioned by the maximization of
the mutual information between FA and F̂V or FV and F̂A.



Because of the symmetry property of mutual information, the
bounds on the classification error associated to each Markov
Chain are equivalent and a joint lower bound can be defined
as follow :

P{e1,e2} > 1− I(FA,FV )+1
log |ΩO| . (2)

Minimizing P{e1,e2} comes then to maximize the mutual in-
formation between the extracted features FA and FV corre-
sponding to each modality.

For maximum mutual information, mapping the features
A and V to subspaces FA and FV not only reduces the dimen-
sionality of the feature space, but also minimizes the lower
bound on the classification error. Moreover, the resulting
feature sets can be expected to compactly describe the re-
lationship between the two modalities. The extraction stage,
therefore, produces optimized features.

As H(FA,FV ) = H(FA|FV ) + H(FV |FA) + I(FA,FV ), it is
important to limit possible augmentations of the conditional
entropies H(FA|FV ) and H(FV |FA). Indeed, if the entropies
increase, they reduce the interfeature dependencies. Dividing
Eq. (2) by the joint entropy H(FA,FV ), a feature efficiency
coefficient [1] can be defined as:

e(FA,FV ) =
I(FA,FV )
H(FA,FV )

∈ [0,1], (3)

where again FA and FV denote any pair of random variables.
Thus, maximizing e(FA,FV ) still minimizes the lower

bound on the error probability while constraining interfea-
ture independencies.

3. SIGNAL REPRESENTATION

3.1 Video representation
The first processing step consists in choosing a tractable and
suitable representation of both signals.

It has been shown in [7] that the audio signal is more
related to the pixel intensity changes than to the raw pixel
intensities themselves. The video features are thus extracted
using the Horn and Schunck’s gradient-based algorithm [8]
to have a local (pixel-based) representation. The method
is implemented in a two frames simple forward difference
scheme so that the temporal resolution is large enough to
capture complex and quickly varying mouth motions. First a
median pre-filtering is used to reduce the noise level. To deal
with the curse of dimensionality, only the magnitude of the
optical flow and the sign of the vertical component are kept.

Optical flow is computed in each couple of frames over
a region of N×M pixels including the lips and the chin of
each speaker. These regions are referred to as mouth regions.
Speakers are observed over a sequence of T frames resulting
in T −1 video feature vectors FV . The norm of these vectors
is normalized to the range [0,1] for the subsequent optimiza-
tion.

3.2 Audio representation
The audio signal also needs to be represented in a tractable
way. This representation should describe salient aspects of
the speech signal, preferably similar to those used by the
human auditory system, while being robust to variations in
speaker or acquisition conditions. Mel-cepstrum analysis is
one of the methods that better approaches these requirements

and as such, is widely used in speech-processing research
[9], [10]. Finally, the speech signal is represented as a set of
T−1 vectors ~C, each containing P mel-cepstrum coefficients
{Ci(t)}i=1:...:P with t = 1, . . . ,T − 1 (the first coefficient has
been discarded as it pertains to the energy).

4. EXTRACTION OF OPTIMIZED SPEECH AUDIO
FEATURES

4.1 Audio feature optimization
In principle, the information theoretic feature extraction dis-
cussed in Sec. 2 can now be used for audio and video features
FA and FV . However, over T − 1 frames, the dimension-
ality of the audio features is still too high to be efficiently
tractable. It can be reduced in the following way.

For a given set of P weights αi in a vector ~α , an audio
random variable FA(~α) is defined as the linear combination
of the mel-cepstrum coefficients:

FA(~α) =
P

∑
i=1

αi ·Ci, (4)

with the weights αi chosen such that ∑P
i=1 αi = 1 and ~α > 0).

Thus, the set of P ·(T−1) parameters is reduced to T−1 val-
ues FA(~α). The minimization of the classification error given
by Eq. (2) will lead to the optimum vector ~α . This optimiza-
tion requires the availability of the joint probability density
as well as of the marginal distributions. These distributions
are obviously unknown and will be estimated using Parzen
windowing with:

f̂ (y) =
1
n

n

∑
i=1

h(y− yi;σ), (5)

where h is a kernel function whose variance is controlled by
the parameter σ , and n is the number of samples available.
A Gaussian kernel G(µA,µV ,σA,σV ) is chosen in our case
for its widespread validity. The variances σA and σV are es-
timated from the data in a robust way, as described in [11]:

σ̃ =
(

4
3n

)1/5

· median |yi− ν̃|
0.6745

, (6)

where n denotes the number of samples and ν̃ the median of
these samples. This implies in our case that the value for σV
stays fixed for a given set of video features, while σA will
adapt to the audio features during the optimization process.

4.2 Optimization criteria
As exposed in Sec. 2, minimizing the classification error
comes to maximize the efficiency coefficient considering the
audio and video features over a mouth region. Optimization
criterion 1 is then defined as:

~αopt = argmax
~α
{I(FV ,FA(~α))/H(FA(~α))}

= argmax
~α
{e(FV ,FA(~α))}. (7)

Notice that in our case the normalization term considers only
the audio entropy as the video feature space remains con-
stant.



The results have motivated the definition of a second cri-
terion involving the two mouth regions together. This cri-
terion is referred to as optimization criterion 2. It maxi-
mizes the squared difference between the efficiency coeffi-
cient computed in each mouth regions (referred to by ΩM and
Ω′

M). Thus the optimization is more constrained. Especially,
differences between the marginal distributions of the video
features in each region are taken into account. If FV and F

′
V

denote the random variables associated to regions ΩM and
Ω′

M respectively, then the optimization problem is:

~αopt = argmax
~α

{
[e(FV ,FA(~α))− e(F

′
V ,FA(~α))]2

}
. (8)

4.3 Optimization algorithm
The optimization itself is performed using the unconstrained
Powell’s direction set method [12] which is deterministic and
does not need the analytical form of the objective function.

To reduce the optimization problem as well as to con-
strain the solution (since ~α is subject to ∑P

i=1 αi = 1 and
~α > 0), the objective function is re-formulated through
trigonometric relations. Namely, instead of directly look-
ing for the set of {αi}i=1,...,P that maximizes the objective
function, a set of {w j} j=1,...,log2 P weights is defined. Tak-
ing advantage of the trigonometric property of Eq. (9), these
log2 P weights are then combined to define the P coefficients
α . If log2 P is not an integer, the power of two immediately
superior is considered and the weights α are normalized af-
terwards.

sin2(w)+ cos2(w) = cos2(
π
2
−w)+ cos2(w) = 1 (9)

αi =
1

∏
k1=0

. . .
1

∏
k j=0

[
cos2(k1

π
2
−w1) . . .cos2(k j

π
2
−w j)

]

with j = 1,2, ..., log2(P). (10)

Thus, the ~α coefficients still constrain the objective function
but the number of parameters to optimize is reduced in a log-
arithmic way.

5. RESULTS

5.1 Experimental protocol
The purpose of the experiments described here was to eval-
uate the ability of the proposed information theoretic fea-
ture extraction method to produce audio features specific to
speech signal. The main reason that justifies the use of such a
complex method is the need to relate the motion of the mouth
to the speech, avoiding non-speech producing mouth motions
or speech originated from people not present in the scene.

Tests have been performed by taking two 4s long tempo-
ral windows on two gray-scale audio-video sequences where
two persons are present, and face the camera. Only one of
them is speaking at a time all along the considered tempo-
ral window. Notice that persons of two different genders are
considered in the second sequence. Since the sequences are
sampled at 25 frames/s, each 4s temporal window contains
100 frames. The two persons present will be called ”speak-
ers”, as they can both potentially be speaking from the detec-
tion algorithm point of view. Also, the four extracted tem-
poral windows will be referred to as sequences 1, 2, 3 and
4.

Optimization Criterion 1
Sequence. Fopt

As Fopt
Ans

1 86.78 % 46.41 %
2 63.35 % -18.47 %
3 88.46 % 86.83 %
4 67.08 % -28.81 %

Table 1: Normalized difference between the mutual infor-
mation computed in the speaker and the non-speaker mouth
regions for each of the four test sequences. The columns in-
dicate which audio features were used.

First, each mouth region is manually extracted from each
of the 100 frames, resulting in two regions of N×M pixels,
where N and M vary between 22 and 33 pixels, depending
on speakers’ characteristics and acquisition conditions. Thus
the video feature set is composed by the N×M× 99 values
of the optical flow norm at each pixel location over the con-
sidered time.

From the audio signal sampled at 44100Hz, a 12 coeffi-
cients mel-cepstrum is computed using 40ms Hamming win-
dows [9], [10].

Considering each mouth region and its associated video
features, the mel-cepstrum coefficients are projected on a
new subspace as defined in Sec. 4. In a first time, only the
optimization criterion 1 defined in Sec. 4.2 is applied to an-
alyze the ability of the method to extract specific audio fea-
tures. The discussion of the results leads to the definition of
the more efficient criterion 2 given by Eq. (8).

5.2 Optimization results
As a result of the optimization, two sets of weights are ob-
tained (one for each mouth region). They give the opti-
mal linear combination of mel-cepstrum coefficients with
respect to the optimization criterion. Let us denote them
~αopt

s and ~αopt
ns , where the indices s and ns indicate whether

these weights result from the optimization performed on the
speaking mouth region or on the non-speaking one respec-
tively. Two corresponding audio feature sets derive from
these weight sets: Fopt

As and Fopt
Ans .

Two pairs of mutual information values can be evaluated
between these audio features and the video features in each
mouth region. If FV s denote the video features of the speak-
ing mouth region and FV ns those of the non-speaking one, the
two pairs of mutual information are given by:

{I(FV s,F
opt
As ) , I(FV ns,F

opt
As )}, (11)

{I(FV s,F
opt
Ans ) , I(FV ns,F

opt
Ans )}. (12)

What we expect is that the largest value corresponds to
the mutual information between the video features of the
speaking mouth region and the audio features. Notice that
the active speaker can not be detected by simply looking at
the objective function’s final values in each mouth region.
Indeed, it has been observed that the optimization could con-
verge towards a larger maximum on the non-speaking mouth.

The results obtained for the four sequences are summa-
rized in Table (1). Values indicate the normalized difference
between the mutual information computed in the speaker and
the non-speaker mouth regions. It appears that the results ob-
tained with mutual information scheme of Eq. (11) (column
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Figure 2: Mutual information obtained in each mouth region
for the four sequences when applying scheme of Eq. (11) and
using the optimization criterion 1.

1) are those expected: the right speaker is always pointed out
by a larger mutual information value. A graphical represen-
tation of these results is shown in Fig. (2). The mutual infor-
mation scheme of Eq. (12) (column 2) does not indicate the
active speaker so clearly, or even fails sometimes (sequences
2 and 4). This is not surprising at all, since the audio features
used in that case have been obtained on the non-speaking
mouth region. Therefore, even if the optimization algorithm
manages to maximize a mutual information based criterion,
the output can not (and is not expected to) reflect an underly-
ing relationship between audio and video.

These results show that the method produce audio fea-
tures with specific information when there exist a relation
with video features. This discussion motivated the definition
of the second optimization criterion given by Eq. (8) which
directly considers the two mouth regions. Thus, only one
weight set {αi}i=1,...,P is obtained and resulting optimal au-
dio features can be directly used to measure the mutual in-
formation in each mouth region. The results are presented in
Tab. (3). The active speaker is correctly detected in each case
but this detection is performed in a simpler one-step measure.

6. CONCLUSIONS AND FUTURE WORKS

We have presented a method that exploits the common con-
tent of speech audio and video signals to detect the active
speaker among different candidates. This method uses the
information theoretic framework exposed in [1] to derive
optimal audio features with respect to the video ones. No
assumption is made about the distributions of the features,
rather they are estimated from the samples. The results show
that the method is able to extract audio features that are
specifically related to the speaker video features. Using only
these extracted features, the algorithm performs detection of
the current speaker.
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