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ABSTRACT
Quadratic Volterra filters are shown to be very effec-

tive in image sharpening applications. The linear combi-
nation of polynomial terms, however, yields poor perfor-
mance in noisy environments. Weighted median filters, in
contrast, are well–known for their outlier suppression and
detail preservation properties. The weighted median sam-
ple selection methodology is naturally extended to the poly-
nomial sample case, yielding a filter structure referred to as
quadratic weighted median (QWM), that exploits the higher
order statistics of the observed samples while simultaneously
being robust to outliers arising in the higher order statistics of
environment noise. The robustness of QWM filter to higher
order statistics of noise is analyzed through the determination
of breakdown probability. The simulation results show that
the proposed method can successfully suppress the noise and
enhance the image details simultaneously. Compared with
the finite–impulse response (FIR) Quadratic Volterra sharp-
ener, the QWM filter exhibits superior performance.

1. INTRODUCTION

Image sharpening is a classic problem in the field of image
enhancement. A widely used simple approach for enhancing
the blurred or imperfectly contrasted image is the unsharp
masking. For instance, consider the structure in of Fig. 1.
The input image is sent through a block that extracts edges
and features. The output is then scaled by an appropriate fac-
tor k and added back to the original image. This method is
generally referred to as unsharp masking [1] and is quite ef-
fective for enhancing low contrast images. The edge extrac-
tion block in Fig. 1 is often implemented as a linear highpass
filter such as discrete linear Laplacian operator [1].

An apparent problem of this technique is that it does not
discriminate between actual image information and noise.
Thus noise is enhanced as well. To decrease the effects of
this problem while still preserving the simplicity of the algo-
rithm, the linear filter is extended to quadratic Volterra (QV)
filter case [2].

QV filters can be described as a linear filter with higher
order polynomial extensions. Even though the filter is not
linear with respect to the input signal anymore, it is still lin-
ear in the impulse response coefficients, i.e., a linear combi-
nation of filters is equivalent to a filter with the same lin-
ear combination of the Kernel parameters. However, the
polynomial nature of QV filter leads to poor performance in
noisy environments. This poor performance results from the
linear combination of polynomial terms utilized in such fil-
ters. Clearly, quadratic terms residing in the higher order
kernels of the filter create outliers. The presented analysis
shows that the tail heaviness of samples, and higher order
terms contributing to a quadratic filter are well ordered, with
the squared terms having heavier tails than cross terms and
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Figure 1: Block diagram of the unsharp masking technique.

cross terms having heavier than observation samples, i.e.,
t xi > t xix j > t x2

i
, where t xi , t xix j , and t x2

i
denote the distribu-

tion tail decay rates of the observed samples (xi), their cross–
terms (xix j, i 6= j), and squares (x2

i ), respectively. The heavier
tails of the cross and squared terms indicate that robust meth-
ods for their sample combinations, rather than weighted sum,
should be considered to avoid undue influence of outliers. In
contrast to polynomial filters, weighted median (WM) filters
are well known for their outlier suppression and detail preser-
vation properties [3]. Indeed, WM filters are the optimal es-
timators of location, in a maximum likelihood (ML) sense,
of samples characterized by the heavy tailed Laplacian dis-
tribution [3]. Hence, the WM sample selection methodology
is naturally extended to the quadratic sample case, yielding
the class of quadratic weighted median (QWM) filters, moti-
vated by the presented linear, cross, and square term tail anal-
ysis for Gaussian statistics. The WM processing of cross and
square term are also justified from a ML perspective [4]. The
breakdown probability analysis demonstrates the improved
robustness of the QWM filter class over traditional QV fil-
ters. The simulations carried out with applications to edge
enhancement shows the superiority of the QWM structure
over the FIR QV structure.

The remainder of this paper is organized as follows. In
Section 2, the statistical foundations of QWM filter are pre-
sented. The traditional QV filter is introduced in Section 3,
along with the derivation of the proposed QWM filter struc-
ture and its statistical analysis through the determination of
the breakdown probability. Section 4 contains the simula-
tions on image sharpening showing the superiority of the
QWM filter over the FIR QV filter. Finally, the conclusions
are drawn in Section 5.

2. STATISTICAL ANALYSIS

The effects of the product and square operators on a random
variable’s (RV) distribution’s tail are considered noting that
these statistics of cross-terms and square values are of par-
ticular interest in QV filtering. In this analysis we utilize the
zero-mean Gaussian distribution,

y X (t) =
1

s
√

2p
exp

(

− t2

2s 2

)

, (1)
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Figure 2: Tails of the y X (·) (solid), y Z(·) (dotted), and y G(·)
(dash–dotted) density functions for the s x = s y = 1 Gaussian
distribution case. Shown for reference is the y X (·) (dashed)
Laplacian distribution with identical variance, l = 1/

√
2.

where s is the scale parameter. The theoretical probabil-
ity density function (PDF) of a RV generated by squaring a
Gaussian distributed RV X with scale parameter s is given
by

y G(t) =
1

s
√

2p t
exp

(

− t
2s 2

)

, (2)

where y G(t) denotes the PDF of the RV G = X2. Also, the
theoretical PDF of a RV generated by the product of two
Gaussian distributed independent RV X and Y with scale pa-
rameters s x and s y respectively, is given by:

y Z(t) =
K0

(
|t|

s xs y

)

p s xs y
, (3)

where y Z(t) denotes the PDF of the RV Z = XY , and Kn(·)
is the modified Bessel function of the second kind of order
n. Note that, for large values of x, K0(x) behaves like 1√

x e−x

[5]. Then equation (3) can be approximated as,

y Z(t) ≈ K

p
√

|t|
exp(−|t|), (4)

for s x = s y = 1. Also, K is take as a constant that normalizes
y Z(t) to unity. The Gaussian PDF and (2) become y X (t) =

1/
√

2p exp
(
−t2/2

)
and y G(t) = 1/

√
2p t exp(−t/2) re-

spectively for s = 1. For large t > 0 the arguments of the
exponentials can be ordered as −t2/2 < −t < −t/2, and the
tail decay rate order is:

t X > t Z > t G, (5)

where t X , t Z , and t G denote the tail decay rate of y X (t),
y Z(t), and y G(t).

The tails of y X (·), y Z(·), and y G(·) are shown in Fig.
2 for the Gaussian case with s x = s y = 1. Also shown for
the reference is the tail of y X (·) for the Laplacian distribu-
tion case with identical variance obtained with l = 1/

√
2,

where l is the scale parameter of the Laplacian distribution.
As the figure shows, the tails exhibit the expected heaviness
ordering, with the cross and square distributions having the
heaviest tails. Also of note is that cross and square distribu-
tions tails are heavier than that of the median optimal Lapla-
cian distribution. The heaviness of the tails indicates that the

robust methods of sample combinations and output determi-
nation, rather than weighted sum, should be utilized to avoid
undue influence of outliers and degradation of performance.

Having established the heaviness of the cross and square
term distributions, we now consider the optimal combination
of samples approached from a ML perspective considering
Gaussian and heavy tailed Laplacian distribution.

Consider a set of N independent samples x1,x2, . . . ,xN ,
each obeying a Gaussian distribution with a (possibly) differ-
ent variances s 2

1 , s 2
2 , . . . , s 2

N . In this case, the ML estimate of
the location parameter m is determined by the minimization
of

G2(m ) =
N

å
i=1

1
s 2

i
(xi − m )2, (6)

the solution to which is the weighted mean

m̂ =
å N

i=1 hixi

å N
i=1 hi

, (7)

where hi = 1/s 2
i > 0. This is simply a normalization of the

standard FIR filter, y = å N
i=1 hixi, where y is the output and

the hi terms are the FIR filter weights. Enforcing the positiv-
ity constraint on the weights constrains the resulting filters to
be smoothers. In general practice, however, this constraint is
relaxed, enabling FIR filters to take on a wide array of spec-
tral characteristics.

A similar connection between filtering and ML estima-
tion is established in the heavy tailed Laplacian distribution
case [3]. The ML estimate of the location, in this case is,
determined by minimizing

G1(m ) =
N

å
i=1

1
s 2

i
|xi − m |. (8)

The solution to which is the weighted median:

m̂ = MED(hi ⋄ xi|Ni=1), (9)

where hi = 1/s 2
i > 0 and ⋄ is the replication operator defined

as hi ⋄ xi =

hitimes
︷ ︸︸ ︷
xi,xi, ...,xi. The weight positivity constrained

again restricts the defined class of filters to smoothers, but, as
in the FIR filter case, this constraint can be relaxed to enable
more general filtering characteristics [3]. The filter output in
the more general case is given by

y = MED(|hi| ⋄ sgn(hi)xi|Ni=1), (10)

where sgn(x) = 1 when x > 0, sgn(x) = 0 when x = 0 and
sgn(x) = −1 when x < 0.

Analogous relation between filtering and ML estimation
is derived for cross and square terms in [4]. It has been justi-
fied from ML perspective that the WM processing of higher
order statistics is more appropriate than weighted sum oper-
ators. These results, coupled with the preceding tail heavi-
ness results, motivate the quadratic weighted median filters
defined in the following section.

3. MEDIAN-TYPE QUADRATIC FILTERING

This section introduces the traditional QV filtering followed
by the QWM filter derivation inspired by the statistical anal-
ysis presented in Section 2. The WM processing of cross and
square terms are also justified from a ML perspective in [4].



A discrete–time QV filter is defined by [6]

y = C2

N−1

å
i1=0

N−1

å
i2=0

h2(i1, i2)xi−i1xi−i2 |i1≤i2 , (11)

where h2(i1, i2) is assumed to be a N ×N upper triangular
matrix (non–redundant terms) [7] representing the quadratic
Volterra Kernel, and C2 is a constant [7].

This formulation clearly indicates that, although the over-
all filtering operation is (polynomial) nonlinear, the filter out-
put is linear with respect to the filter coefficients, and cross
and square terms of observation samples. We are motivated
to change the above weighted sum formulation, to a weighted
median formulation by the results presented in Section 2. Re-
call that also in Section 2, it is shown that the linear combi-
nation of the samples is ML optimal only in the Gaussian
distribution case, and that WM combinations are more ap-
propriate in the heavier tailed case. Also, the heaviness of the
distributions tails corresponding to cross and square terms in-
dicate that robust combination methods should be utilized for
higher order statistics. And lastly, under Gaussian distribu-
tion assumption, WM combinations for the cross and square
terms are justified from a ML perspective in [4].

The quadratic weighted median (QWM) filter is therefore
defined by replacing the weighted sum operators in (11) with
weighted median operators,

y = C2MED(|h2(i1, i2)| ⋄ sgn(h2(i1, i2))xi−i1xi−i2 |N−1
i1=0|N−1

i2=0).
(12)

Also, the QWM filter is expressed more compactly as

y = C2〈h2〉, (13)

where we utilize the notation 〈h〉 ≡ MED(|h| ⋄ sgn(h)x) and
define x = [x2

i ,xixi−1, . . . ,x2
i−1,xi−1xi−2, . . . , . . . ,x2

i−N+1].
A direct measure of filter robustness is given by the

breakdown probability, which is defined as the probability
of an impulse occurring at the filter output [8]. The break-
down probability of selection type filters, such as WM fil-
ters, can be established utilizing the sample selection prob-
ability (SSP), defined as the probability that the filter out-
put is the i-th sample, i.e., si = P(y = xi), i = 1,2, . . . ,N.
The SSPs can be established for any WM filter with inte-
ger valued weights [8] and, as noted above, any WM filter
with real valued weights can be represented by an equiva-
lent WM filter with integer valued weights [8]. Thus the
SSPs can be established for any WM filter, and we set
s = [s1,1,s1,2, . . . ,s2,2,s2,3, . . . ,sN,N ], as the SSP vector for the
QWM filter. Let p and N (p) = P(y 6= ±¥ ) be the probabil-
ity that an observed sample is corrupted by an impulse, i.e.,
p = P(xi = ±¥ ) and the probability that there is no break-
down, respectively. Then the BDP of a QWM filter is given
by

N (p) =
N

å
i=1

N

å
j=1

si, j(1− p)2 |i< j +
N

å
i=1

si,i(1− p), (14)

where N is the filter order. Thus, the BDP of QWM is simply
b (p) = 1−N (p).

The weighted sum methodology of traditional QV filter-
ing produces an impulsive output whenever one or more im-
pulses are present in the observations set, yielding a break-
down probability of b V (p) = 1− (1− p)N that is equivalent
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Figure 3: Breakdown probability for the QWM
(solid) and QV (dashed) filters with window sizes
N = 5(circle),7(diamond), and 9 (cross).

to a standard window size N linear FIR filter. That is, the QV
filter breakdown probability is strictly a function of window
size and is independent of polynomial order and coefficient
values. The breakdown probabilities for QWM and QV fil-
ters with N = 5,7, and 9 are plotted in Fig. 3. Samples are
uniformly weighted in the QWM filter case, which yields the
most robust performance. As the figure shows, the QWM fil-
ter has a lower breakdown probability than the QV filter in
all cases. Moreover, increasing the window size significantly
increases the breakdown probability of the QV filter, while
the QWM filter breakdown probability is largely invariant to
changes in window size.

4. SIMULATION RESULTS

In this section, the performance of QWM filter is compared
with the QV filter given in [2] as

y(i, j) = 3x2(i, j)−0.5x(i+1, j +1)x(i−1, j−1)

−0.5x(i+1, j−1)x(i−1, j +1)− x(i+1, j)x(i−1, j)
− x(i, j +1)x(i, j−1),

(15)

for image sharpening application. This filter is used in the
edge extraction block given in Fig. 1 and is shown to perform
better than the linear unsharp masking systems [2]. Hence,
we will compare the performance of the QWM filter with QV
filter defined in (15). It has been shown that [3] a WM filter
with the weights same as a FIR filter possess similar spectral
responses. Hence in the QWM filter formulation, the filter
weights in (15) are utilized. Thus, replacing the weighted
sum operations in (15) with WM operators yields the QWM
counter–part,

y(i, j) = MED(3⋄ x2(i, j),−0.5⋄ x(i+1, j +1)x(i−1, j−1),

−0.5⋄ x(i+1, j−1)x(i−1, j +1),−1⋄ x(i+1, j)x(i−1, j)
−1⋄ x(i, j +1)x(i, j−1)).

(16)

The ”Lena” image of size 512 × 512 shown in
Fig. 4 (a) (zoomed in) is used in our experiment. The
filter performances are both tested in noise–free and Gaus-
sian noise environments. The scaling factors in QV and
QWM filter cases are chosen so that the same enhancement
level is achieved. Fig. 4 compares image sharpening results
utilizing QV and QWM based unsharp masking operating on
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Figure 4: (a) The original ”Lena” image, (d) noisy ”Lena” corrupted by Gaussian noise, (b), and (e) sharpened ”Lena” images
using QV filter, (c), and (f) sharpened ”Lena” images using QWM filter.

noisefree and additive Gaussian noise contaminated images.
Inspection of the images shows that the QWM output
contains sharper edges, with less overshoot and ringing,
as well as more consistent uniform areas. These effects
are especially noticeable in the Gaussian noise corrupted
case. Even though the image in this case is corrupted by
a low level of noise, the noise affects are amplified in the
traditional QV system. The QWM results, in contrast,
minimizes the influence of cross and square term outliers,
resulting in crisp edges, more consistent uniform regions,
and visually more pleasing results.

5. CONCLUSIONS

In this paper, the statistics of the higher order terms con-
tributing to the output of a quadratic Volterra (QV) filter is
analyzed. The results indicate that even though the observa-
tion samples are Gaussian distributed, the higher order terms
exhibit heavy tail distributions, even heavier than median op-
timal Laplacian distribution. A novel quadratic weighted me-
dian (QWM) filter structure is proposed. The robustness of
QWM filter to higher order statistics of noise is analyzed
through the determination of breakdown probability. Simu-
lations carried out to evaluate and compare the performance
of the proposed structure (QWM) shows the superiority of
QWM over the traditional QV filtering.
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