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ABSTRACT 
In this paper, we investigate chaotic-type features for uni-
versal speech steganalysis. These features are used in the 
design of linear regression classifier. The steganalyzer is 
tested on watermarking and steganographic methods. Ex-
perimental results show the potential of chaotic-type fea-
tures for their discriminatory power to be used in steganaly-
sis. We believe that the integration of chaotic-type features 
with linear ones may capture both linear and non-linear 
aspects of speech signals leading to robust and efficient 
hybrid steganalyzers.   

1. INTRODUCTION 

Steganography is the art and science of hiding the very 
presence of communication by embedding secret messages 
into innocent looking electronic signals such as digital im-
ages, video and audio. To achieve covert communication, 
stego-signals, signals containing a secret message, should 
be indistinguishable from cover-signals, signals not con-
taining any secret message.  In this respect, steganalysis is 
the set of techniques that aim to distinguish between cover-
signals and stego-signals. In this paper, we address the 
steganalysis of digital speech signals. 
Steganographic algorithms differ in hiding the messages. 
Least Significant Bit (LSB) method embeds the message by 
flipping the LSBs of audio samples [1, 2] or, alternatively, 
transforms coefficients [3, 4]. Spread-spectrum techniques 
add scaled and spreaded version of the message into the 
cover signal in the time or frequency domain, possibly with 
perceptual weighting to guaranty inaudibility [5].  
While there has been quite some effort in the steganalysis of 
digital images, see good survey papers [6, 7, 8], steganalysis 
of digital audio is relatively unexplored, only two approaches 
are reported to date [9, 10]. The potential of distortion met-
rics in predicting the presence of steganographic content 
within one and two dimensional signals i.e., audio and image 
signals are shown in [9, 11]. In [9, 11], the basic idea rests on 
the evidence that the distortion measures computed between 
signals and their denoised versions have statistically distin-
guishable distributions for cover-signals and stego-signals. 
These statistically distinguishable features are then used to 
build a steganalyzer to discriminate cover-signals from stego-
signals. The efficacy of this approach is shown within both 
steganographic and watermarking contexts. 

In [10, 12], the basic approach works by finding predictable 
higher-order statistics of "natural" signals within a multi-
scale decomposition, and then showing that embedded mes-
sages alter these statistics. Their statistical model begins by 
building a linear basis that captures certain statistical proper-
ties of audio signals. A low-dimensional statistical feature 
vector is extracted from this basis representation and used by 
a non-linear support vector machine for classification. The 
efficacy of this approach for speech is shown on LSB em-
bedding and Hide4PGP [10].  
Common to these approaches are the observation that data 
hiding changes the underlying statistical structure of the 
cover-signal and features that capture these statistical differ-
ences can be used for the classification of cover and stego-
signals.  
The traditional approach to speech modelling is the linear 
model which leads to the well known linear prediction 
model. This model has been used in speech coding, synthesis 
and recognition. However there is theoretical and experimen-
tal evidence for the existence of non-linear phenomena in 
speech signals that can not be accounted by the linear model 
[13, 14, 15]. 
In this paper we explore the potential of nonlinear features 
based on chaos theory and measure how chaotic characteris-
tics of cover and stego-signals change after data hiding. The 
parameters of chaotic processes like Lyapunov exponents 
[16] and false nearest neighbours (FNN) [17] are used as 
features to build a universal steganalyzer. A universal stega-
nalyzer is not targeted for a known data hiding method and 
works for different data hiding methods and supposed to 
work even for unknown methods. Experimental results with 
well known data hiding methods show the potential of the 
proposed method for speech signal steganalysis.  
In Section 2 we describe the construction of the feature 
vector with Lyapunov exponents and false nearest 
neighbours. Steganalyzer design and results are given in 
Sections 3 and 4. Conclusions are drawn in Section 5. 

2. CHAOTIC-TYPE FEATURES 

In this section we present false nearest neighbours (FNN) and 
Lyapunov exponents as chaotic-type features and give the 
scatter plots of these features to show how discriminative 
they are over cover and stego speech signals. Actually, 
Lyapunov exponents and FNN parameters are described on 
non-linear chaotic dynamical systems. A discrete-time dy-
namical system can be modelled as Y(n+1)=F[Y(n)], where 



 

 

Y(n) is state-vector of the system.  Also, a speech production 
system can be viewed as non-linear dynamical system [18, 
19].  A speech signal segment x(n), n=1,….,N, can be con-
sidered as a one-dimensional projection of a vector function 
applied to the unknown multidimensional dynamic vector 
variable Y(n). According to the embedding theorem [20], the 
vector X(n)=[x(n),x(n+TD),�,x(n+(DE-1)TD)] formed by 
samples of the original delayed by multiples of a constant 
time delay TD defines a motion in a reconstructed DE-
dimensional space that  has many common aspects with the 
original state- space of Y(n). Many quantities of the original 
dynamical system in the original state-space Y(n), like 
Lyapunov exponents, are conserved in the reconstructed 
space traced by X(n). The useful information about the origi-
nal unknown dynamical system Y(n) → Y(n+1) can be un-
covered if the embedding dimension DE  is large enough. The 
embedding theorem does not specify a method to determine 
the required parameters, time delay TD and embedding di-
mension DE.  The embedding dimension for human speech 
signals is commonly selected between 3 and 7 for speech 
signals [21, 22].  
 
2.1 False Nearest Neighbours 
One of the foundations of the analysis of chaotic time series 
is Takens embedding theorem [20]. The theorem guarantees 
that if we perform a correct time-delay embedding of scalar 
signal, we may construct a DE-dimensional space that inher-
its the dynamics of the original signal even we don’t know 
the real dimension of the signal. The False Nearest 
Neighbours is the most accepted method for finding mini-
mum embedding dimension which was proposed by Kennel 
et al.  [17]. This method gives us a false nearest neighbours 
fraction for a given embedding dimension and time delay. 
The algorithm first determines all nearest neighbours for all 
the points in phase space. The nearest neighbour vector of  
X(n) can be given as 
 
XNN(n)=[xNN(n), xNN(n+TD), �, xNN(n+(DE-1)TD)] (2) 
 
 If the point is within the neighbourhood of the reference 
point the neighbourhood is a true neighbourhood. These two 
points will preserve the neighbourhood for all embedding 
dimensions. But if the points have become neighbours by the 
projection of small embedding dimension, the neighbour-
hood is a false neighbourhood. The next step is to control all 
of the neighbourhoods if the nearest neighbour is still a 
neighbour for the new higher embedding dimension. The 
algorithm labels the k. neighbourhood as true neighbourhood 
if  
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is greater than a number of order two, where RA is the nomi-
nal radius of the phase space defined as the root-mean-square 
value of the data about its mean [16].  After labelling all 
neighbourhoods as true or false neighbours, the algorithm 

calculates the percentage of the false nearest neighbours to 
all neighbours as follows 
 

The Number of False Nearest Neighboursx100
The Number of Nearest Neighbours

FNN=  (4) 

 
In Fig. 1 the difference between the cover and stego objects’ 
false nearest neighbours fractions of 3 embedding dimen-
sions (DE=3, 4, 5) over 100 samples is shown. 

 
Fig. 1 False Nearest Neighbours Fractions of 3 embedding 
dimensions (DE=3, 4, 5) of cover and stego-objects over 100 
samples for DSSS data hiding method. 
Fig. 1 clearly shows that FNN values of stego and cover-
speech-signals are discriminant enough to be used as fea-
tures in the steganalyzer design. 
 
2.2 Lyapunov Exponents 
Lyapunov exponents are used to quantify the predictability of 
chaotic systems. Chaotic systems are said to be ‘sensitive to 
initial conditions’. ‘Sensitive to initial conditions’ means 
nearby trajectories, the set of points in phase space visited by 
a signal trajectory after transients are gone, will diverge at an 
exponential rate. Of course in reality, initial conditions can 
only be specified with some finite precision. Two close tra-
jectories will move apart at an exponential rate which is de-
scribed by the Lyapunov exponent. There are a number of 
exponents equal to the embedding dimension (DE) of the 
phase space λ1,..,λDE. ith Lyapunov exponent, λι can be calcu-
lated for ith principal axis [23].  

 
Fig. 2 Largest Lyapunov exponent (λ1) of 100 samples of 
cover and stego-objects for Steganos data hiding method. 



 

 

 
In Fig. 2 we can see the difference between the cover and 
stego objects’ largest Lyapunov exponent (λ1) over 100 sam-
ples where embedding dimension was selected as 7. 
Figs 1 and 2 show that these chaotic-type features are dis-
criminant enough to be used as features in the steganalyzer 
design. 

3. STEGANALYZER DESIGN 

The chaotic features in Section 2 are used as feature vectors 
for the steganalyzer design. We use a training set of cover 
speech signals and stego-speech signals. A linear regression 
classifier was designed using the statistics collected with the 
database of audio signals. Computed chaotic-type features 
are regressed to, respectively, -1 and 1, depending upon 
whether the speech signal did not or did contain a hidden 
message. In the regression model [24], we expressed each 
decision label [ ] Nigi ,..,1,1,1 =−∈  as a linear combination 
of chaotic-type features, qiqiii fffg βββ +++∈ ...2211 , 

where ),...,( 21 qiii fffF =  is the vector of q chaotic-type 

features computed from ith speech sample and qβββ ,..., 21  
are the regression coefficients. The regression coefficients are 
predicted in the training phase, and then they are used in test-
ing phase. In the testing phase, chaotic-type features are 
measured for the incoming speech signal, then the decision 
value is obtained by using the predicted regression coeffi-
cients. If the output exceeds the threshold 0, then the decision 
is that the speech contains message, otherwise the decision is 
that the speech does not contain any message.  
 
3.1 The Feature Vector 
The feature vector is obtained from Lyapunov exponents and 
false nearest neighbour rates of stego and cover-speech-
signals. TISEAN is used for calculating false nearest 
neighbour rates of the signal [25]. The program explores 
false nearest neighbours by changing neighbourhood size for 
specified embedding dimension, DE, [17]. The feature vector 
consists of 3 components: the fraction of false nearest 
neighbours, the average size of the neighbourhood, and the 
average of the root-mean-squared (RMS) size of the 
neighbourhood. 
 

F1=[ FNN, mean(RA), RMS(RA)] (7) 
 
For a given embedding dimension, DE, we calculate the 
Lyapunov Exponents of the given signal by using the 
TSToolbox [26]. The program generates DE dimensional 
Lyapunov exponents in increasing order as follows 
 

F2=[ λ1, λ2,�,
Edλ ] (8) 

 
The embedding dimension of the stego and cover-speech 
signals is selected between 3 and 7 for FNN and 7 for 
Lyapunov exponents. The complete feature vector is con-
sisted of 22 elements as follows 
 

Table 1. The feature vector with 22 elements. F1 is the false 
nearest neighbours feature vector as given in (7).  
k 1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15
fk F1(DE=3) F1(DE=4) F1(DE=5) F1(DE=6) F1(DE=7)
k 16 17 18 19 20 21 22 
fk λ1 λ2 λ3 λ4 λ5 λ6 λ7 

4. EXPERIMENTAL RESULTS 

We have performed steganalysis experiments over five dif-
ferent algorithms, of which three are watermarking tech-
niques and two are steganographic techniques. The water-
marking techniques are direct-sequence spread spectrum 
(DSSS) and frequency hopping with spread spectrum 
(FHSS) and echo hiding (ECHO) [5]. The steganographic 
methods are Steganos [2] and MP3Stego [4]. The rationale 
of using these tools was their popularity, freely availability 
and wide usage. 
The speech segments have durations of three to four sec-
onds, are sampled at 16 kHz and recorded in acoustically 
shielded medium. The procedure consists of embedding 
messages to all available cover signals, randomly selecting 
half of the set of the stego and cover signals for training, 
leaving the other 50% for testing phase. The embedded mes-
sage size was 10% of the audio size, which is usually the 
maximum allowed capacity for LSB embedding. The em-
bedding algorithms were tested on 100 speech utterances. 
The detection results are given in Table2. The results show 
the potential of the proposed chaotic-type features.  
 
Table 2. The performance of the classifiers 
Data Hiding Methods False Positive False Negative 
DSSS 0/50 0/50 
FHSS 0/50 0/50 
ECHO 2/50 9/50 
STEGANOS 4/50 5/50 
MP3STEGO 6/50 13/50 

5. CONCLUSIONS 

In this paper, chaotic-type features are investigated for uni-
versal speech steganalysis. These features were used in the 
design of linear regression classifier. The steganalyzer was 
tested on watermarking and steganographic methods. Ex-
perimental results showed the potential of chaotic-type fea-
tures for their discriminatory power to be used in steganaly-
sis. We believe that the integration of chaotic-type features 
with linear ones may capture both linear and non-linear 
aspects of speech signals leading to robust and efficient 
hybrid steganalyzers.   
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