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ABSTRACT

Advanced Encryption Standard (AES) algorithm incorpor-
ates a byte permutation operation which reorders the bytes
within a 128-bit data block. This permutation can be de-
scribed by reading the input data bytes into a 4 x 4 matrix
called state in column wise and shifting the rows by one,
two, or three bytes to the left. In decryption, the shifting is re-
versed, i.e., the rows are shifted to the right. While such shift-
ing operations are straightforward if the computation is done
with 128-bit data blocks at a time, they become more com-
plex in area-efficient folded implementations where smaller
than 128-bit data blocks are used. In such cases, a storage of
data is required, either in the form of registers or memories.
In this paper, efficient realizations of the byte permutations in
AES algorithm, where the size of simultaneously computed
data can be 1, 2, 4, or 8 bytes, are presented. All the realiza-
tions use the minimum number of storage elements implying
area-cfficiency.

1. INTRODUCTION

In various embedded applications, there is a need for a simple
low-power implementation of AES algorithm [1] to guaran-
tee a secure data transmission. However, current AES imple-
mentations are targeted mainly to high-speed data thus they
exploit the parallelism in the algorithm for increasing the
throughput. On the other hand, low-rate networks exist, e.g.,
for short range monitoring and control in automation, safety,
healthcare, and entertainment at homes, public buildings and
industry. For these applications, IEEE 802.15.4 standard
[2] was ratified in the end of 2003 defining the radio and
medium access control layer of low-rate, low-power wire-
less networks. The core of 802.15.4 security is the AES al-
gorithm, thus its implementation has a great impact on area-
and power-efficiency of the overall security system.

The current AES implementations can be divided into it-
erated, pipelined, and loop unrolled structures [3]. In iter-
ated structures, computation of a 128-bit data block requires
multiple iterations. In pipelined implementations, additional
register stages are placed in the data path for enhancing the
throughput. In the loop unrolled implementations, two or
more rounds are computed at a clock cycle.

An efficient method for decreasing area and power is ob-
tained with the iterated and folded structures where computa-
tion is done with the data blocks of size less than 128-bits. An
example of such structure is proposed in [4] where 128-bit
data block is computed iteratively in 32-bit blocks. Similar
folded structure has been proposed in [5, 6]. The key advant-
age in folded structures is that the area can be decreased in
proportion of the folding factor. However, the byte permuta-
tions become more complex since they span over the whole
128-bit block and either registers or memories are needed for

delaying certain data bytes. Reducing the complexity of byte
permutation realizations is the principal problem considered
in this paper.

The AES byte permutations are illustrated in Fig. 1(a,b)
with a 128-bit data organized into a 4 x 4 matrix called
state.  Each entry in the matrix represents a byte in-
dex within a 128-bit data block. These indices are per-
muted by shifting the row i cyclically to left/right by
i, i = {0,1,2,3}, thus these byte permutations are often
called as ShiftRows operations. The permuted indices are
(0,5,10,15,1,6,11,12,2,7,8,13,3,4,9, 14) for left shift and
(0,7,10,13,1,4,11,14,2,5,8,15,3,6,9,12) for right shift
permutations.

The principal block diagram of the folded AES struc-
ture is depicted in Fig. 2. It consists of ShiftRows, Sub-
Bytes, MixColumns, and AddRoundKey operations. Various
area-efficient implementations of SubBytes operation have
been proposed, e.g., in [6, 7, 8], for MixColumns operation
in [4, 6], and for AddRoundKey operation in folded AES
implementation in [4]. None of the existing papers have con-
sidered efficient ShiftRows implementations for folded AES
structures.

In current folded AES structures, the byte permutations
are implemented with registers or FPGA-specific dual-port
memories. For example, in [4], an FPGA implementation
of a folded AES implementation is proposed where the byte
permutations are suggested to be performed with separate
dual-port memories for read and write operations. At the
end of each round, the memories are swapped. This method
uses twice the amount of memory that is actually needed.
The authors also proposed an alternative realization, which
uses shift registers. Also in [5, 6] registers were used for
byte permutations. However, none of the previous register-
based permutation unit resulted in the minimum number of
registers.

In this paper, efficient realizations for the byte permuta-
tions in AES algorithm of any cipher key length are pro-
posed. These realizations can be divided into register- and
memory-based structures. The advantage of the given struc-
tures is that only the minimum amount of storage is needed
implying area efficiency. The proposed structures are well
suited for folded AES implementations where the computa-
tion is done with Q bytes at a time, O = {1,2,4,8}. In addi-
tion, some application-specific processors may benefit from
the proposed structures in AES implementations if they are
included as a custom unit. This way some performance gain
is obtained since no permutations need to be done with pro-
cessor’s own resources, which can be time time-consuming
since the permutations are done with bytes while typical pro-
cessors operate with 16- or 32-bit words.
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Figure 1: Byte permutations (ShiftRows operation) in AES
algorithm: (a) shift rows left, (b) shift rows right.

2. MEMORY-BASED BYTE PERMUTATION UNITS

The principal idea in memory-based byte permutation unit
(BPU) is to exploit an in-place storage method such that
no conflicts are allowed and only the minimum amount of
memory is used. In this way, there is no need to use separate
write and read memories but a dual-port memory is needed
due to simultaneous read and write operations. In general,
the row address of a certain data byte is likely to be different
in successive rounds but, however, the row address sequences
are cyclic, i.e., they repeat after certain number of rounds.

Next, the address sequences are defined. The module ad-
dresses ma are constant determined by the following equa-
tion where Q is the number of memories and # is the index
for 16 data bytes

ma(h) =h mod Q. (1)

In this case, there is no need for the multiplexing of data
bytes between the memory modules and computation units
thus the input and output ports of the memories can be
straight connected to other computation units.

The row address sequences are slightly different for each
parallel memory configuration. Let us assume that the num-
ber of memory modules Q is 1, 2, or 4. In this case, the row
address ra of module ma for the left shift operation is given
as

ra(j, k) =j+4jk+1)+(4/0)(k+1)ma mod16/Q (2)

where j is the access index, j = (0,1,...,16/Q—1),and k is
the round, k = (0,1,2,...).

For the right shift operation, the row address for module
ma is given as

ra(j,k)=j—4jk+1)—(4/0)(k+1)ma mod16/Q. (3)

Implementation of the row address generator is very
simple: as the access index j and round index k& need to
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Figure 2: Principal block diagram of folded AES structure.
BPU: byte permutation unit. Q: number of bytes processed
atatime. Q = {1,2,4,8}.
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Figure 3: Evolution of memory contents: (a) initial state, (b)
after 1st round (k = 0), (¢) after 2nd round (k = 1), and (d)
after 3rd round (k = 2).

be provided anyway, no separate counters are needed. It is
also worth noting that the number of memory modules Q is
constant in actual realization, thus no division need to be im-
plemented. In addition, since all the computations are mod-
ulo 16/Q, the word width for the generated row address is
log,(16/0).

Next, the operation of memory-based BPUs is illustrated
with an example where the number of parallel memories is
four, which is targeted to AES structures where four bytes
are computed at a time, as in [4, 5]. First, the 128-bit data
block is initialized into four dual-port memories as depic-
ted in Fig. 3(a). As shown, the data bytes are written into
consecutive memory locations. Consider the left shift opera-
tion where the first four bytes to be processed are 0,5, 10, 15.
These bytes are read out, processed, and the results with the
new indices 0, 1,2, 3 are stored into the same locations. The
row addresses for that are obtained from (2). After all the
bytes are processed, the contents of the memories is as de-
picted in Fig. 3(b). Continuing in a similar way, the contents
of memories after 2nd and 3rd rounds are shown in Fig. 3(c)
and Fig. 3(d), respectively. Thereafter, the memory contents
return to its initial state and the cycle starts over.

3. REGISTER-BASED BYTE PERMUTATION
UNITS

Register-based BPUs are constructed based on Parhi’s design
methodology for data format converters proposed in [9].
Such design methodology results in one-dimensional per-
mutation units, where a shift register is used for delaying
data. The data is reordered by circulating the bytes from the
last register backwards with the aid of multiplexers. This
backward allocation is possible since certain bytes are read
out earlier, i.e., bypassed with multiplexers placed at the out-
put. Since the backward allocation and bypassing are in bal-
ance, there exist no deadlocks, and each time a byte needs to
be backward allocated there is an empty slot available.

Let us begin with a one-port byte permutation unit. By
following the design methodology in [9], the structure de-
picted in Fig. 4(a) is obtained. The one-port BPU is cap-
able of performing both left and right shift byte permutations
with the given control signals c;. Note that with c; value of
zero, the uppermost byte in the input is passed to the out-
put. The latency of the network is 12 cycles, which is the
maximum distance a data byte has to be moved in the per-
mutation. Thus, 12 registers are needed in minimum, which
is the lower bound for register complexity. The operation



of the network is continuous so there is no need for empty
cycles and the next 128-bit sequence can be fed in after the
last byte of the previous 128-bit sequence. The depicted con-
trol signals are given for permuting a single 128-bit sequence
where clock cycle ¢ = 0 is the time instant when the first byte
is at the input of BPU.

The two-port BPU depicted in Fig. 4(b) takes in two bytes
at a time and has a latency of six cycles. Also this BPU is
capable of performing both the left and right shift permuta-
tions with the given control signals. Similarly, we obtain
four- and eight-port BPUs, depicted in Fig. 4(c) and Fig. 4(d),
respectively. Both the structures support left and right shift
permutations.

The presented register-based byte permutation units were
obtained based on the general design methodology for data
format converters in [9]. This methodology is well suit-
able for ShiftRows permutations since there is no need to
exchange bytes between parallel delay lines. All the result-
ing structures require only the minimum number of registers,
as stated in [9]. As the number of registers in the proposed
BPUs is less than required for storing all the 16 bytes, some
pipeline stages need to be placed into final AES structures.
Pipelining is however often used in AES implementations
and is likely to provide some performance gain by shortening
the critical path.

4. COMPARISON

In this section, a short comparison of the 4-port BPUs is
made and the results are shown in Table 1. The Proposed 1
corresponds to 4-port memory-based BPU and the Pro-
posed 2 to 4-port register-based BPU depicted in Fig. 4(c).
None of the structures except the proposed ones are scal-
able to the other number of ports. In addition, the structures
proposed in [6, 5] are not applicable to decryption since no
right shift operation is supported. If such support were ad-
opted, it would increase the complexity of multiplexing. In
Table 1, the multiplexing complexity is estimated by convert-
ing all multiplexers to equivalent 8-bit 2-to-1 multiplexers,
e.g., a 32-bit 4-to-1 multiplexer is equivalent to 12 8-bit 2-to-
1 muxes. As seen, the number of registers in the Proposed 1
is less than in the other realization. Similarly, the size of
memory in the Proposed 2 is half of the scheme in [4]. The
register-based BPU in [4] has less multiplexers than the Pro-
posed 1 because the bytes are not backward allocated. This
requires more registers and implies also greater latency. Also
in [6, 5] less multiplexers is needed than in Proposed 2, which
is due to the fact that they do not support both left and right
ShiftRows permutations. It is possible to configure the Pro-
posed 2 BPU in Fig. 4(c) for left shift permutations which
would reduce the number of multiplexers to 10. In that case
the multiplexers corresponding the control signals ¢y, ¢y, ¢
are left out and c3 is reduced to an 8-bit 2-to-1 multiplexer.

5. CONCLUSIONS

In this paper, efficient byte permutation units for compact
AES structures of any cipher key length were proposed. The
units are divided into memory- and register-based structures
based on the type of storage. All units are area-efficient since
they use only the minimum amount of storage elements.
They support folded AES structures where the number of
parallel computed bytes O can be QO = {1,2,4,8}. It was
also shown that compared to other existing approaches for

Table 1: Comparison of 4-port BPUs. # regs: number of 8-bit
registers. mem: size of memory in bytes. # muxes: number
of 8-bit 2-to-1 multiplexers.

[ #regs [ mem [ # muxes | shift left/right [ scalable

[4] (memory) - 32 - yes/yes no
[4] (register) 28 - 9 yes/yes no
[6] 28 - 12 yes/no no

[5] 16 - 12 yes/no no
Proposed 1 - 16 - yes/yes yes
Proposed 2 12 - 14 yes/yes yes

byte permutations in compact AES implementations, the pro-
posed units resulted in less number of registers and memory.

REFERENCES

[1] Advanced Encryption Standard, National Institute of
Standards and Technology Std., Nov. 2001.

[2] Wireless Medium Access Control (MAC) and Physical
Layer (PHY) specifications for low-rate wireless per-
sonal area networks, IEEE Std., 2003.

[3] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An
FPGA-based performance evaluation of the AES block
cipher candidate algorithm finalists,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 9,
no. 4, pp. 545-557, Aug. 2001.

[4] P. Chodowiec and K. Gaj, “Very compact FPGA imple-
mentation of the AES algorithm.” in CHES, ser. Lecture
Notes in Computer Science, C. D. Walter, C. K. Kog, and
C. Paar, Eds., vol. 2779.  Springer, 2003, pp. 319-333.

[5] S. McMillan and C. Patterson, “Jbitstm implementations
of the advanced encryption standard (Rijndael).” in FPL,
ser. Lecture Notes in Computer Science, G. J. Brebner
and R. Woods, Eds., vol. 2147.  Springer, 2001, pp.
162-171.

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A
compact Rijndael hardware architecture with S-box op-
timization,” in ASIACRYPT ’01: Proceedings of the 7th
International Conference on the Theory and Applica-
tion of Cryptology and Information Security. Springer-
Verlag, 2001, pp. 239-254.

[71 V. Rijmen. Efficient implementation of the
Rijndael S-box. [Online]. Available:
www.esat.kuleuven.ac.be/~rijmen/rijndael/sbox.pdf

[8] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R.
Rao, and P. Rohatgi, “Efficient Rijndael encryption im-
plementation with composite field arithmetic,” in CHES
‘01: Proceedings of the Third International Workshop
on Cryptographic Hardware and Embedded Systems.
Springer-Verlag, 2001, pp. 171-184.

[9] K. K. Parhi, “Systematic synthesis of DSP data
format converters using life-time analysis and forward-
backward register allocation,” [EEE Transactions on
Circuits and Systems—Part II: Analog and Digital Sig-
nal Processing, vol. 39, no. 7, pp. 423—440, Jul. 1992.



NS — O — O = O — O — O —

t
o~~~ 0 —~0 —~0 o —~
—f \ eof \ !
rrT rrT E olo—~o—~oco—~oc 0 —~o —
oy
L= s =
= R R R -
7] 0O 0 0O 0 0 0 U 0 0 Vv 0 o
A a0
Voo oo No—~—oc—~—oc—~oco—~0 —~0o —~
Tlo o o~ auf..l.l.o.loo.lo.llo.lo
o
Slocoen Jlooo=. Clonoc o ~a o Slo—~o—~0o—~0 —~0 — O —~
= =
Slocow glooom oo o —~a = STTFTTITITETFTSS T
Qloocoom Qoo om XN~ oo~ —
Jlocoewnm Jloocom Sono o —~a
Qoo — Qoo — W Y |l—oc—~ococo
Voocoom Yoocoem o—[=)\ — nonocoom
~Nje © —a ~Nje © —a o NS oS ™
Slocom Sloocom m oo oo m
Qo — o — Qoo — No o oo
Rlo - o —~ Rlo - o — —locNnoc oo mn
Clo o — Slo — o — m Slonoc oo m
© © —
Cloocomnm Llooom ER RIS
Yl—ocoo ©Y~o~—~a )
Flo - o —~ Flo - o —~ m =
- - b=
Clo o~ o C—c oo 7
Alcocom ZYlocom s
Tlooc o e Tlooc o e m ~
Clooc o m Slooc o . VMo noc oo
- - S—[3) — Clococcmoc —~—coom
ojlocomn oloocom Tlonoc o —~a
0o o o ¢ I E=R=IE= m Cle o o —a noco —nNoco—~ooan
~ooomnm ~loocom oo - o — fYlo—~o~—00 00O~
cloocomn ovooom 0|— o oo —~a Mo ococo—~cococoo
nlo o o e nlo o o e m ~NMoa—~o oo . P NSO OO N O~ O O™
t|lo © © en t|lo © © en WY o oco—~a o = B —loococomno ~ocoomn
=
oo omn woocom nonococoom m m m m B Oooomo—~ooo ™
= — Y
N © o N © o o No oo mn - . = STSSFPFEFSFES
STPLZ) STTL=) =
—|lococown —~|ococom monococom = = =
clocoococomnm olocom aNlcanococom m m m m locooooo
— — o
S — & = S — o = —~locnoc oo == = ==
S 0 0 O S 0o 0 O CI\M%rT#&MM noo—~oco—~oc o —a
olocnococom r T r
— fYloo—~—o—~0c0o0 ~o —~
FSSTSSSTE
-
& 5 & m m m Lmlcoc~o~o—~coco
= = = S-S S Nococo~o—~ococom
&= & &=
b= = = —~lcco—~oco—~cococm
= = =
Z 3 % &«
5 oOlocco—~oco—~ococom
= S — o T w0 oo - » o
— 0O 0 0 0 0 0 0 0 o 0
=
Z
= ° <
~ ~ ~

-port BPU, (b) 2-port
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