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                                 ABSTRACT 
This paper introduces an audio watermark (WM) decoding 
scheme that performs a Support Vector Machine (SVM) 
based supervised learning followed by a blind decoding. 
The decoding process is modelled as a two-class classifica-
tion procedure. Initially, wavelet decomposition is per-
formed on the training audio signals, and the decomposed 
audio frames watermarked with +1 and -1 constitute the 
training sets for Class 1 and Class 2, respectively. The de-
veloped system enables to extract embedded  WM  data at 
lower  than -40dB Watermark-to-Signal-Ratio (WSR) lev-
els with more than 95% accuracy and it is robust to degra-
dations including audio compression (MP3, AAC), and 
additive noise. It is shown that the proposed audio WM 
decoder eliminates the drawbacks of correlation-based 
methods. 

1. INTRODUCTION 

Recently, distribution of audio data in digital form became 
easier and more extensive, that makes the copyright pro-
tection much more difficult. Audio watermarking tech-
niques are proposed to ensure the IP rights by embedding 
ownership information into the host data, while preserving 
originality. Accurate decoding of the embedded watermark 
(WM) information is a challenging problem in audio wa-
termarking and many techniques have been proposed for 
this.  
       In the literature, correlation-based decision rules are 
used in most of the WM decoding methods, because of 
their simplicity [1,2,3,4]. The lack of these systems is that, 
the WM decoding performance relies on the accuracy of 
the calculated correlation between watermarked and em-
bedded key signals. Higher the correlation, lower the un-
extracted WM data. On the other hand, there is a trade-off 
between the correlation and the audibility.  
       In this paper, supervised learning of embedded WM 
data is proposed and it is shown that performance of the 
developed SVM-based audio WM decoder outperforms 
the existing correlation-based decoders. Due to the good 
learning capability, SVMs are used in the training stage. In 
the literature, there are some preliminary works that use 
SVMs for image watermark decoding, i.e. it is used for 
logo detection where the intensity level differences of the 
pixels’ blue components are used for the training of SVMs 
[5]. In [6], higher-order statistical deviations that give 

information about the embedded data are obtained by 
Quadrature Mirror Filters (QMF) and then these statistics 
are used for the SVM training and classification of wa-
termarked images. In [7], without extracting the WM in-
formation, the SVMs are used for classifying the water-
marked and un-watermarked audio signals, based on some 
audio quality features. 
 Unlike the existing methods, this paper proposes a 
SVM based audio watermark decoding scheme which is 
capable of correctly extracting the WM bits. Test results 
demonstrate that performance of the introduced WM de-
coding technique outperforms state-of-the-art correlation-
based decoding techniques [2, 4] and it is robust to attacks 
such as additive noise and audio compression, i.e., mp3 
and AAC. Obtained results encourage its usage in on-line 
monitoring and authentication applications. 

2. ADAPTIVE WATERMARK EMBEDDING 

An adaptive spread spectrum audio watermarking scheme 
[2, 3] that is compatible to MPEG Layer 3 Model 2 (MP3) 
audio compression standard is used for embedding the 
WM information. 
     Let si refers to the ith frame of the input audio signal. At 
each instant, the encoder takes an original audio frame, si, 
as its input and transmits the corresponding watermarked 
frame, iWM

s , over the communication channel. The wa-

termarked audio frame is formulated as in Eq.(1), 
( , )i i j i i j mWM i

w f w= + = +s s s k s k , 

                                      1, ..., ( )i LxRP= , 1, ...,j L=      (1) 
where Refresh Period (RP) refers to the number of block 
insertions. In Eq.(1), WM bit wj can be either +1 or -1, 
where j=1,…L and L is the length of the watermark block. k 
refers to the secret key sequence with zero mean generated 
by a Pseudo Noise generator (PN). ( , )if s k  is a nonlinear 
function of  the input audio signal, si, and the secret key k 
that models the watermark generation. Our encoder applies 
an iterative approach that allows specifying a nonlinear f(.) 
in a data adaptive way [2, 3]. In [4], an analytic approach to 
analyze a linear f(.) is introduced. In Eq.(1), j mi

w k models 

the nonlinear distortions, where mi
k  is the modulated key 



embedded into audio frame i after multiplied by jw . The 

WM encoder generates mi
k  by shaping the secret key se-

quence k according to masking thresholds obtained by psy-
choacoustic masking of is .  

3. AUDIO WATERMARK DECODING BY SVMs 

The developed SVM-based decoding scheme describes the 
WM decoding as a pattern recognition problem, and brings 
a new approach to the audio WM extraction. 
 
3.2. Extraction of Training Vectors 
The proposed decoding algorithm first performs wavelet 
decomposition on the audio signals collected in the train-
ing data set. The idea behind using the wavelet decomposi-
tion is that the embedded WM data are dominant in the 
detail parts of the wavelet transformed signal [2]. Conse-
quently, the N dimensional ith training vector it  can be 
obtained by taking the inverse wavelet transform of the 
detail coefficients described as: 

       -1
i iWM

W= ⎛ ⎞
⎜ ⎟
⎝ ⎠st d ,         i=1,..,l                    (2) 

where W-1 denotes the inverse Wavelet transform, and 

iWM
sd  refers to the detail coefficients of the watermarked 

audio signal.  
       The feature vectors, it , i=1,..,l, constitute the N di-
mensional training vectors for the SVM classifier, where l 
refers to the number of training vectors. 
 
3.2. Training the SVM for Watermark Decoding 
Due to the good learning capability, SVMs are used in the 
training stage. Originally, the SVM classifier is designed 
for two-class classification [8]. Given a training set 

T={ 1 1( , ), ..., ( , )l ly yt t }, where 
N

i Rt ∈  is an N-

dimensional feature vector and { 1, 1}iy ∈ − +  is a class 
label, the aim of the SVM training is to find an optimal 
hyper-plane, 0b⋅ + =a t , where a is normal to the deci-
sion hyper-plane, 2 / | |a  is the margin, and | | / || ||b a  is 
the perpendicular distance from the decision hyper-plane 
to the origin. The optimal SVM classifier that maximizes 
the margin is designed by maximizing the Wolfe dual [8] 
of the Lagrange functional given in Eq.(3), 

      1 ( ) K( )max max 21 , 1
i i j i j i j

l l
W yy

i i j
t t

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜α α ⎟⎜ ⎟⎜⎝ ⎠
= α− αα ⋅∑ ∑

= =
α     (3) 

subject to constraints 

          0
1 i i

l
y

i
α =∑

=
,  0 i C≤ α ≤ ,   i = 1,…, l  ,    (4) 

where iα  is the ith Lagrange multiplier corresponding to 
the ith training vector. If the training set is not separable, 

deviations of the misclassified samples from the decision 
boundary is controlled by the misclassification cost pa-
rameter C where C defines an upper bound for the La-

grange multiplier, iα , i = 1,…, l.  
     In this work, because of the nonlinear nature of the au-
dio watermark decoding problem, a nonlinear SVM classi-
fier is designed by using a Gaussian Radial Basis Function 
(RBF) kernel. The Gaussian RBF kernel is defined as 

2 2|| || /2
( , ) i j

i jK e
σ− −

=
t t

t t , where σ  is the width of the RBF 
kernel.  
     In the proposed WM decoding method, the decoding 
process is modeled as a two-class classification procedure, 
i.e., audio frames watermarked by +1, by -1 are labeled as 
Class 1 and Class 2, respectively. The training set 
T={ }1 1( , ),...,( , )l ly yt t  is formed by assigning the class label 

{ 1, 1}iy ∈ + −  to each training vector ti, obtained by the 
wavelet decomposition of ith audio frame. The SVM clas-
sifier is trained with the training vectors coming from two 
classes. The hyper-plane parameters a and b, that deter-
mine the decision surface, and the support vectors 

,s SV∈t  that correspond to 0sα > where SV ⊆ T  are 
obtained. 
     In order to evaluate the classification performance ten-
dency to selection of the training vectors, the training set T 
is formed in two different ways. In the first case, all of the 
training vectors are collected from a single audio clip, and 
training of the SVM classifier is achieved where l is de-
termined with the best adaptation between the classifica-
tion accuracy and the computational complexity. In the 
second case, l / 10 training vectors are collected from 10 
different audio files. It is shown that, performance of the 
introduced audio WM decoder does not rely on the selec-
tion of the training samples. 
 
3.3. Classification of the Audio Frames 
Let { }1 , ..., uS = t t  denote our test set where vt , 

1, ..., ,v u=  is an N-dimensional  test vector. In order to 
obtain the test vector vt ,  the received signal vR

s is first 

decomposed into its detail 
vR

sd and approximation 
vR

se  

parts by wavelet transform. In order to eliminate channel 
noise, the detail coefficients of decomposed signal, 

vR
sd , 

are thresholded before taking the inverse wavelet trans-
form as in Eq. (5);  

       -1  ,     1v h v R
W v = , . . . , u= Λ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠st  d    (5) 

where hΛ  refers to the thresholding operation thus elimi-
nates the coefficients less than a threshold h. 
     The classification of the test vectors is performed ac-
cording to Eq.(6), 



       ( ) sgn ( , )s s s vv s SV
F y K bt t t

∈
= α +∑

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠             (6) 

where F(.) describes the decision rule of the binary classi-
fier, vt  is the considered test vector, SV is the support vec-

tor set  determined at the training stage, s SVt ∈  is the 

support vector that correspond to 0sα > , and b is the 
bias term obtained by the SVM training.  

4. CORRELATION-BASED AUDIO WM 
DECODING 

This section briefly describes the state-of-the-art audio 
WM decoder that uses the correlation-based decision rule 
[2,4]. Eq.(7) defines the correlation function between the 
received audio frame, iR

s , and the secret key signal k, for 

ith frame; 

     
1

1 1 1

( ) ( )

( ) ( ) ( ) ( ) ( )n( )

N

i iRn
N N N

i j min n n

r k n s n

k n s n w k n k n k n n

=

= = =

= ∑

= + +∑ ∑ ∑
  (7) 

     Since k is a PN signal which should be un-correlated with 

si  and n,  in ideal 
1

( ) ( ) 0
N

i
n

k n s n
=

≈∑  and 
1

( )n( ) 0
N

n
k n n

=
≈∑ . 

Therefore, Eq.(7)  can be simplified as: 

1
( )

N

i j min=
r w k(n)k n≈ ∑         (8) 

     Consequently, wj , the WM bit embedded into frame i can 
be estimated according to the decision rule given in Eq.(9): 

     1

1

ˆ1, if ( ) ( ) 0

ˆ1, if ( ) ( ) 0

N
j min

j N
j min

w k n k n
w

w k n k n

=

=

⎧
⎪
⎪
⎨
⎪
⎪⎩

≥∑
=

− ≤∑

      

     

                                 (9)       

where ˆj mi
w k is estimated by using Wavelet denoising. In 

Eq.(10),  if the correlation value is greater than zero, wj  is 
extracted as +1, if it is lower than zero, wj  is extracted as -
1. Thus the extracted WM bit highly depends on the 
threshold value. Furthermore, in practice, neither k and si, 
nor k and n can be chosen as uncorrelated, that also re-
duces the WM extraction accuracy of the decoder. How-
ever, these fundamental problems of the existing correla-
tion-based decoders are eliminated by the introduced 
SVM-based decoder.  

5. TEST RESULTS 

5.1. Test Data and Performance Measures 
A test data set is prepared by sampling various speech and 
music files at 44.1 kHz (16 bits/sample, N=1024). The test 
set consists of watermarked and un-watermarked audio 
files in total length of 15 hours. Robustness to compres-
sion is evaluated on the same test data after MP3 and 
AAC compression (96kbps). Watermark embedding 
within a 2-22050 Hz frequency band is achieved by using 

the adaptive WM encoder with a WM sequence of length 
L = 15 bits. 
     Watermark decoding performance is reported in terms 
of True Classification ratio (TC) and False Classification 
ratio (FC) versus WSR and SNR. TC, FC, WSR and SNR 
are described by equations (10) through (13). 

  _ _ _ _
_ _ _

Number of Correctly Classified Bits
TC

Number of Total Bits
=             (10) 

 
     _ _ _ _

_ _ _
Number of False Positive Bits

FC
Number of Total Bits

=                (11) 
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     The SVM based classification has been performed by 
using RBF kernel with the parameters 22σ = and C = 1.   
     
5.2. Performance versus WSR and SNR 
In order to observe WM decoding performance, perform-
ance at different WSRs has been examined for two-class 
classification. The SVM classifier is trained by an audio 
file of length about 139 sec. It is observed that the decod-
ing performance does not depend on selection of the train-
ing data. Thus, test results reported in this section are ob-
tained by the training data collected from a single audio 
clip. Distribution of TC versus WSR for un-compressed, 
MP3 compressed and AAC compressed files are compared 
and reported in Fig. 1 and Fig. 2. Note that, the FC ratios 
of Class 1(+1) and Class 2(-1) are obtained nearly the 
same, thus we reported the arithmetic mean of them. The 
SVM-based and correlation-based results are obtained by 
using a test set of length about 2.5 hours. As it is observed 
from Fig. 1 and Fig. 2, for un-compressed audio files, true 
classification performance of the correlation method and 
the SVM based method are similar and the decoding accu-
racy remains greater than 95% when WSR>-40 dB. How-
ever, the superiority of the proposed scheme can be seen in 
compressed domain. For the mp3 compressed audio, the 
proposed SVM–based decoding provides about 10% gain 
at WSR = -45 dB, while it is about 6% for the AAC com-
pressed audio. In both compressed and un-compressed 
domain, TC ratio reaches to 100% for both decoding 
scheme when WSR ≥ -20 dB.  
     In order to evaluate the WM decoding accuracy at 
noisy communication channels, the same test audio files 
are distorted by i.i.d. Gaussian noise. The reported per-
formance is obtained on a test set of length about three 
hours. The SVM training is performed on a training set of 
length about 278 sec. As it is seen from Fig. 3, distribution 
of TC versus SNR is almost the same for correlation 



based and SVM based decoding schemes. Decoding accu-
racy exceeds 90% at SNR = 15 dB, and reaches 99% at 
SNR = 20 dB.       

6. CONCLUSION 

This paper proposes a blind audio watermark decoding 
scheme based on supervised learning of the watermarked 
audio signals. Performance of the proposed decoder is su-
perior to the classical correlation based method in both un-
compressed and compressed domains. The developed wa-
termark decoding method is also robust to channel noise.  
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Fig. 1. TC versus WSR for wav and mp3 files 

 
Fig. 2. TC versus WSR for wav and AAC files. 

 
Fig. 3. TC versus SNR. 
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