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ABSTRACT* 
Subtraction of ictal and interictal SPECT images is known 
to be successful in localizing the seizure focus in presurgical 
evaluation of patients with partial epilepsy. Computer-aided 
method for producing subtraction ictal SPECT coregistered 
to MRI (SISCOM method) is commonly used. There are 
two registrations involved in SISCOM: between the ictal-
interictal SPECT images, which was shown to be more criti-
cal, and between the ictal image and MRI. The aim of this 
paper is to improve registration accuracy of ictal-interictal 
registration in SISCOM by registering all three images 
(ictal, interictal SPECT, MRI) simultaneously. The results of 
the simulation study demonstrates that, in surface-based 
registration, triple-registration method results in smaller 
ictal-interictal SPECT registration error than the pairwise 
registration method (p<0.05) for a range of cost-function 
parameter values.  

1. INTRODUCTION 

SISCOM has been shown to improve the sensitivity and 
specificity of Single-Photon Emission Computed Tomogra-
phy (SPECT) in identifying the seizure focus in presurgical 
evaluation of patients with partial epilepsy [1, 2]. It has ad-
vantages over side-by-side visual interpretation and manual 
registration approaches. Recent studies suggest that sensitiv-
ity and specificity of SISCOM may surpass those MRI, PET, 
scalp-recorded EEG, interictal SPECT, and visual analysis of 
ictal SPECT [1, 2]. Computer-aided methods for SISCOM 
are commonly used. Among the two registrations involved in 
SISCOM, the registration error of ictal-interictal image regis-
tration is more crucial, and one of the major contributors to 
noise in SISCOM [4]. Registration errors (even subvoxel) at 
this step produce false-positive activation areas and obscured 
true-positive activation areas [4]. Therefore, the recom-
mended approach is to register the two SPECT images, rather 
than registering each to MRI [3].  
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1.1 Surface Based Registration 
 
In SISCOM, brain surface registration techniques have tra-
ditionally been used to produce subtraction SPECT images 
[5-8]. Thresholding and morphological operations are gen-
erally used to extract the 3D brain surface. Surface-
registration consistently matches SPECT images with better 
than 1 voxel dimension [7]. Iterative closest point (ICP) 
algorithm [9] and a multiresolution chamfer distance [6] are 
some of the techniques in the literature. Audette et al have 
presented a survey paper [10] that overviews surface regis-
tration methods. 
 
1.2 Voxel Based Registration 
 
Several voxel-based registration algorithms have been de-
veloped that were shown to provide increased registration 
accuracy in many cases [11-13]. A few studies that have 
specifically addressed ictal-interictal SPECT registration 
accuracy [4] suggest that voxel-based registration is more 
accurate than surface matching, and AIR algorithm [14] is 
more robust than (normalized) mutual information [15-18]. 
 
1.3 Using Additional Information in Registration 
 
To improve the registration accuracy of SPECT registration, 
use of additional information such as a simultaneously ac-
quired transmission data, injection of a second radionuclide 
or usage of a scatter window data have been proposed. Pluim 
et al [19] made a comprehensive survey of various mutual-
information-based registration techniques of more than two 
images, where multiple images are simultaneously registered. 
Without acquiring additional data, MRI set is already avail-
able as additional information in SISCOM. This study inves-
tigates whether using MRI as additional information can im-
prove the accuracy of ictal-interictal SPECT registration ac-
curacy. The problem is formulated as simultaneous three-
image-registration (ictal, interictal SPECT and MRI).  
 
Our initial investigation results are presented in [20]. This 
article explains our methodology, and presents simulation, 
phantom and patient study results.  More detailed analysis is 
given in [21]. 



2. METHODS 

2.1 Proposed Registration Method 
 
In our investigations for simultaneous three-image-
registration, a surface-based approach is taken [20, 21], 
since formulation of the simultaneous voxel-based three-
image-registration (SPECT-SPECT-MRI) is not trivial [19]. 
The approach taken in this section can be extended to a 
voxel-based cost function in future studies. 
 
Registration problem is defined as simultaneous registration 
of ictal, interictal SPECT and MRI brain image surfaces. It is 
achieved as minimization of squared distance function below 
with respect to two rigid transformation functions T1 and T2 
(each has 3 rotation, 3 translation parameters; a total of 12-
parameters) between two SPECT and one MRI image sets: 
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in which, {yi1} for i1=1,…,Ny is a set of points on the ictal 
brain surface Y, xi1=C( T1(yi1), X ) is a point on the MRI 
brain surface X closest to T1(yi1); {zi2} for i2=1,…,Nz is a 
set of points on the interictal brain surface Z, xi2=C( T2(zi2), 
X ) is a point on the MRI surface X closest to T2(zi2); and 
zi1=C( T1(yi1), T2(zi1) ) is a point on the transformed inter-
ictal surface Z closest to T1(yi1), i.e. transformed ictal sur-
face Y. In our implementation, zi1=C( T2

-1T1(yi1), zi1 ), whose 
result is identical to the previous formula. 
 
Note that in simultaneous three-image-registration, there are 
only two degrees of freedom (two transformations: T1 and 
T2) to be determined. We use MRI as “to” image volume in 
registration for both T1 and T2. Either transformation can be 
replaced by a transformation from ictal to interictal volumes 
(lets call it T3), but this will not affect the methodology, 
since this transformation is a function of others. 
 
The first term in (1) is the average squared distance between 
transformed (T1) ictal surface and MRI surface. The second 
term is the average squared distance between transformed 
(T2) interictal surface and MRI surface. The third term is the 
average squared distance between transformed (T1) ictal and 
transformed (T2) interictal surfaces. α is a constant to adjust 
the proportional weight of the squared distance between 
SPECT-SPECT surfaces versus that between SPECT-MRI 
surfaces. Such a term is considered appropriate in order to 
accommodate intra-modality and inter-modality distance 
terms together in the same cost function (1). Optimum α is 
determined by min. ictal-interictal SPECT registration error.  
 
In order to evaluate the cost function (1), we need to com-
pute the distance of a surface point in one data set to the 
other surface. To do this, the simplest approach is to deter-
mine the closest point among the points of the surface. In 
our implementation, k-d tree technique is used [22, 23] for 

fast computation (alternatively, chamfer distance based fast 
computation [6] may be used). To determine the optimum 
transformation parameters, the cost function (1) has to be 
minimized with respect to 12-parameters (t1x, t1y, t1z, r1x, 
r1y, r1z, t2x, t2y, t2z, r2x, r2y, r2z). We choose Powell algo-
rithm [24] to this optimization (parameter is set to 10-4).  
 
Our investigations have revealed that, the cost function (1) 
has many local minima around the global minimum. But the 
cost function behaves as quite quadratic away from the 
global minimum. Therefore, after first Powell run, it con-
verges to a local minimum within very close proximity of 
global minimum. Because of this behaviour, we decided to 
use randomly distributed initial configurations technique 
[15]: initializing Powell algorithm with 16 uniformly dis-
tributed random point set (within ±2 mm and ±2 degree of 
first Powell run solution), and then choosing the solution 
that achieves minimum cost function. Genetic algorithm 
[25], simulated annealing [24] and multiresolution approach 
[15, 26] are some of the other possible techniques. 
 
2.2 Simulations  
 
Validation of this study is difficult due to lack of appropriate 
(ictal, interictal SPECT and MRI) data set with external 
markers [13]. For these reasons, a realistic simulation study 
is conducted to compare the accuracy of ictal-interictal reg-
istration in: (i) simultaneous (triple) ictal-interictal-MRI 
registration and (ii) pairwise ictal-interictal registration.  
 
The Monte-Carlo code developed in [27] is adapted for 
brain SPECT geometry.  A high resolution patient brain MRI 
volume (T1-weighted, MPRAGE) is used (Fig. 1a) with 
voxel size 1x1x1mm. Cerebral and extracerebral regions are 
first segmented using “Brain Extraction Tool” [28]. Cerebral 
region is next segmented using probabilistic SPM2 (2003) 
[29] software. Voting is then applied to identify non-
overlapping gray matter (GM), white matter (WM), cerebro-
spinal fluid (CSF) and extracerebral regions (ECR) where 
the class having maximum probability by SPM segmenta-
tion is chosen (Fig. 1b).  The image intensities in each re-
gion is modified so that the radioactivity ratios of 24:10:1:1 
are assigned to GM, WM, CSF, ECR respectively to form 
interictal SPECT template, as shown in Fig. 1c [30]. In order 
to create the ictal template, the interictal template is modi-
fied to represent contrast changes between ictal-interictal 
images: volumetric Gaussian activity spots of varied size 
(STD=10-20 mm) and amplitude (25-75% of the GM activ-
ity level) are added to form ictal SPECT templates (Fig. 1d). 
Next, the Monte-Carlo simulator is run using the ictal and 
interictal templates to generate projection data from a total 
of 120 angular views around 360deg to generate 5-pairs of 
ictal-interictal sinograms (count rates: 4.6 million counts for 
ictal and 7.0 million counts for interictal). Then, planes of 
images are reconstructed by using Filtered Back Projection 
(FBP) algorithm as shown in Fig. 1e-1f. Attenuation correc-
tion is implemented based on Chang method [31]. 
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Figure 1: A slice from (a) MRI, (b) segmented MRI into 
GM, WM, CSF and ECR, (c) ictal template, (d) interictal 
template, reconstructed (e) ictal, (f) interictal image. 
 
Next, 15 sets of Gaussian distributed random translation and 
rotation parameters are generated (STD=10 degrees for rota-
tion and STD=10 mm for translation parameters). Using 
these parameters, 5-pairs of reconstructed ictal and interictal 
images are translated and rotated to obtain 15 image sets in 
random orientation for the registration algorithm in order to 
represent clinically unknown translation and rotated situa-
tion. Relative transformations between ictal and interictal 
SPECT is within ±35.85 mm and ±33.64 degrees. 
 
After that, reconstructed SPECT images are thresholded to 
segment brain regions. A fill algorithm is used to segment all 
the voxels within the brain and boundary voxels in MRI and 
SPECT images are obtained. Next, pairwise- and triple- reg-
istrations are done by running Powell algorithm with ran-
domly distributed initial configurations (to reach global 
minimum) to compute registration parameters. 
 
Finally, the registration accuracy of each method is meas-
ured by computing the average Euclidean distance of 6 pre-
determined points which are on brain surface in orthogonal 
directions away from the center of mass of brain. We call 
this “registration error” in the results section. 
 
2.3 Phantom and Patient studies  
 
Since true registration parameters of phantom and patient 
images could not be known, an absolute measure of registra-
tion accuracy could not be obtained. Therefore, phantom and 
patient image registration tests are done by visual compari-
son method where physicians are made available all the 
views of registered images: colored/fused.  

3. RESULTS 

3.1 Simulation Results 

The simulation data registration error results are shown in 
Table 1 for 15 image sets for different methods. Triple-
registration method gives smaller (p<0.05) registration error 
than pairwise surface-registration method, only for the fol-
lowing α values: α=0.3, α=0.5, α=0.7. However, for the 
cases: α=0.0 and α≥1.0, statistically significant reduction in 
error is not obtained. Normalized mutual information (NMI) 
method (pairwise) results show that NMI error is smaller 
than all surface-based triple-registration errors (p<0.001). 

 
 Surface-based triple registration 
Set # α=0 0.3 0.5 0.7 1.0 2.0 

Surf. 
pair 

Voxel 
NMI 

1 0.90 0.79 0.76 0.73 0.71 0.71 0.69 0.26 
2 1.89 1.75 1.72 1.77 1.79 1.85 1.88 0.33 
3 0.72 0.83 0.84 0.85 0.90 1.14 1.69 0.38 
4 1.55 1.63 1.68 1.70 1.73 1.84 1.88 0.46 
5 0.96 0.73 0.75 0.77 0.78 0.82 0.85 0.37 
6 0.65 1.27 1.33 1.39 1.42 1.52 1.58 0.50 
7 1.44 1.42 1.50 1.46 1.55 1.60 1.66 0.56 
8 1.08 1.54 1.59 1.64 1.66 1.67 1.72 0.55 
9 1.12 0.69 0.67 0.70 0.72 0.88 0.88 0.93 
10 0.96 1.11 1.18 1.22 1.25 1.32 1.41 0.30 
11 1.20 1.14 1.17 1.18 1.19 1.21 1.28 0.67 
12 1.72 1.58 1.56 1.54 1.55 1.53 1.54 0.54 
13 1.39 1.32 1.31 1.30 1.33 1.35 1.26 0.98 
14 2.01 1.95 1.88 1.86 1.86 1.85 1.88 0.53 
15 1.22 1.29 1.31 1.31 1.33 1.26 1.15 0.76 

Avg 1.26 1.27 1.29 1.30 1.32 1.37 1.43 0.54 
Table 1: Ictal-interictal registration error (mm) of 15 
image sets using surface-based triple and pairwise 
registration and voxel-based pairwise normalized mutual 
information (NMI) methods. The last row displays the 
average error computed among 15 sets. 
 
If the cost-function (1) is examined carefully, the result of the 
optimization for α=0.0 corresponds to individual SPECT-
MRI registrations; on the other hand, for high α values, solu-
tion converges to pairwise (ictal-interictal) registration. 
Therefore, both limiting cases of α values are not expected to 
be the optimum working point of triple-registration, justify-
ing the above statistical analysis results.  
 
3.2 Phantom and Patient Study Results 
 
Observer study results of phantom and patient data revealed 
no observable difference between the registration method 
results. We should point out that for the best performance of 
the method introduced in this paper, geometric and scale dis-
tortion in MRI should be corrected prior to application of the 
method [32]. In our phantom and patient studies, we were not 
able to do these corrections on MRI data, similar to many 
studies in the literature. 

4. CONCLUSIONS 

The results of the simulation study have demonstrated that, 
in surface-based registration, triple-registration method re-
sults in smaller ictal-interictal SPECT registration error than 
the pairwise registration method (p<0.05) for a range of 
cost-function parameter values. But, improved registration 
error is still higher than NMI error (p<0.001), which is a 
voxel-based registration algorithm. However, the results of 



this study can be used in the near future research to apply 
the triple-registration principle into improving the voxel-
based registration results of ictal-interictal registration. 
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