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ABSTRACT
We propose a method for estimating the power spectral density
(PSD) of nonstationary noise when a noisy speech signal is given.
The method is based on the Kalman filtering technique. In contrast
to the known noise statistics tracking methods that are based on time
smoothing of the noisy speech periodogram, we use a Kalman fil-
ter based on a low order model of the noise power spectrum and
update the noise estimate for the next frame according to the differ-
ence between the measurement of the noisy speech power spectrum
and the current Kalman estimate of it. We derive a recursive es-
timation scheme of a low computational complexity, which makes
the proposed method well suited for real time implementations. The
method can be combined with any speech enhancement algorithm
that requires a noise PSD estimate. Objective and subjective perfor-
mance evaluations show that the proposed scheme exhibits a good
noise tracking performance and that it achieves improvement in the
quality of the enhanced speech as compared to the case where noise
PSD estimate remains invariant across time. Listening test results
indicate a statistically significant improvement in the quality of en-
hanced speech compared to the fixed PSD case.

1. INTRODUCTION

With the growth of mobile communication applications, the prob-
lem of reducing the background noise in noisy speech signals has
become increasingly important. The class of speech enhancement
techniques based on short-time spectral amplitude (STSA) estima-
tion (see [1, 2]) have proved to be of particular practical inter-
est due to their low complexity and relatively good performance.
As most single-channel speech enhancement (SE) methods, STSA
based techniques require a power spectral estimate of the noise pro-
cess in order to extract a clean speech signal estimate from a noisy
realization. As any SE scheme, the performance of STSA based
techniques is much affected by the capability to track variations in
the statistics of the noise [3], particularly under low signal-to-noise
ratio (SNR) conditions and non-stationary noise environments. In
[3] a recursive scheme for noise estimation, commonly known as
the Minimum Statistics (MS) method is designed to be combined
with STSA speech enhancement schemes. The method is based on
tracking the noisy speech spectral minima without any distinction
between speech activity and speech pause, enabling the algorithm
to update the noise estimate even in the speech presence regions.
Although the method generally works well for tracking of relatively
slowly varying noise sources, a disvantage of the method is a track-
ing lag in the noise estimate [3, 4]. A similar method is described
in [4], where the response of the noise estimator to the rise of the
noise level is improved by periodogram smoothing in both time and
frequency and speech presence probability estimation.

In this paper, we propose a method for noise power spectral
density (PSD) that is based on the application of the Kalman fil-
tering technique in the STSA context. To develop a Kalman filter
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for this application, we exploit a priori knowledge about the noisy
speech by using a low-order model that describes the development
across time of speech and noise power levels. The resulting esti-
mator is then optimal (given the model) within the class of linear
estimators. Instead of the noisy speech periodogram smoothing,
as proposed in [3, 4], the Kalman filter based estimator uses a dif-
ference between estimate of the noisy speech PSD and the current
measurement of the noisy spectrum, multiplied with the so-called
Kalman gain, to obtain the noise PSD estimate in the next frame.
The resulting algorithm is of a low computational complexity that
can be further reduced by pre-computing Kalman gains.

2. STOCHASTIC MODEL OF THE NOISY SPEECH
POWER SPECTRUM

The first step in development of our method is to derive a low-order
model of the noisy speech that will be used in the estimator. We
assume that the noise is additive such that the short-time Fourier
transform (STFT) of the noisy speech signal can be written as

Y (k, l) = S(k, l)+ N (k, l), (1)

where Y (k, l), S(k, l), N (k, l) denote STFT coefficients of the noisy
speech signal, speech and the noise, respectively, k denotes the fre-
quency bin index and l represents frame index. Furthermore, we as-
sume that speech and noise are uncorrelated random processes and
that STFT are Gaussian distributed (see e.g. [1, 2]). It can be then
easily shown that the magnitude square of the noisy speech STFT
coefficients are exponentially distributed random variables for all k
and l with a probability density function (PDF) given by

f|Y (k,l)|2(x) =
1

λs(k, l)+λn(k, l)
exp

{

−
x

λs(k, l)+λn(k, l)

}

,

(2)

with x ≥ 0. In (2), λs(k, l) = E{|S(k, l)|2} and λn(k, l) =

E{|N (k, l)|2} are variances of the speech and the noise STFT co-
efficients given in (1).

Next, define the stochastic process

y(k, l) =
(

λs(k, l)+λn(k, l)
)

e(k, l), (3)

where e(k, l) is an exponentially distributed random variable with
mean and variance equal to 1. It can easily be shown that the proba-
bility distribution of y(k, l) is identical to that of |Y (k, l)|2 given in
(2). Equation (3) can be rewritten in the matrix form as

y(k, l) = Cx(k, l)e(k, l), (4)

with

C =
[

1 1
]

and x(k, l) =

[

λs(k, l)
λn(k, l)

]

.

We assume that variations of the power spectrum variance across
time can be modelled as

x(k, l +1) = A(k)x(k, l) + E(k)w(k, l), (5)



where

A(k) =

[

an(k) 0
0 as(k)

]

, E(k) =

[

en(k)

es(k)

]

,

and w(k, l) ∈ N (0,1) is a standard normal distribution. The state
transition matrix A(k) is chosen to be diagonal, because for uncorre-
lated speech and noise process, variations in one process should not
influence variations in the other. Since the variances of the speech
and the noise processes can not be smaller than zero, the state x has
to satisfy the following constraint

λs(k, l) ≥ 0 and λn(k, l) ≥ 0, (6)

for all k and all l.
The numerical values of A(k) and E(k), which in this work re-

main constant across time, are obtained by (offline) numerical opti-
mization. In this way, the proposed scheme exploits a priori knowl-
edge of the speech production process (through as(k) and es(k))
and can exploit any available priori knowledge about the noise pro-
cess (through an(k) and en(k)).

3. KALMAN FILTERING BASED NOISE POWER
SPECTRAL DENSITY ESTIMATOR

Equations (4), (5) and (6) form the model of the noisy speech power
spectrum. We note that this model does not fit in the classical
Kalman filter setting because the output equation (3) is in a mul-
tiplicative form, rather than the well known additive form (see [5]).
Therefore the standard Kalman filtering formulas can not be applied
to the model described in section 2. In this subsection we derive the
Kalman filtering equations for the model described in section 2.

The problem that we consider is to find the linear MMSE esti-
mator for the system given by (4), (5) and (6). It is well known that
the MMSE estimate can be expressed as the following conditional
mean (see [5])

x̂(k, l +1) = E
{

x(k, l +1)
∣

∣Yl (k)
}

, (7)

where E(·) denotes the statistical expectation operator and Yl (k) is
the set of observations of the noisy speech power spectrum defined
by

Yl (k) := {|Y (k, l)|2 |Y (k, l −1)|2 · · · |Y (k,0)|2}.

We constrain our estimator to be from the class of linear estimators
i.e. it can be expressed as

x̂(k, l +1) =

l
∑

i=0

P(k, i)|Y (k, l − i)|2. (8)

It can be shown that the one-step ahead prediction of y(k, l) is

ŷ(k, l) = E
{

y(k, l)
∣

∣Yl−1(k)
}

= Cx̂(k, l), (9)

Let us define an innovation process as

ỹ(k, l) = |Y (k, l)|2 − ŷ(k, l). (10)

The innovation [5, 6] process has the following properties
1. Innovations are orthogonal to each other: E{ỹ(k, l)ỹ(k, l − i)} =

0 for i = 1, · · · , l.
2. The set of innovations up to frame index l can be obtained by

linear transformation of observations Yl (k).
3. The set of innovations up to frame index l contains the same

information about power spectrum as Yl (k).
Let P̂(k, i) denote a linear filter satisfying

x̂(k, l +1) =

l
∑

i=0

P̂(k, i)ỹ(k, l − i).

Because the innovations are orthogonal to each other and we seek
the best linear estimator it follows from the orthogonality principle
that innovations and estimation error obtained by the optimal esti-
mator are orthogonal i.e.

E

{(

x(k, l +1)−

l
∑

i=0

P̂(k, i)ỹ(k, l − i)
)

ỹ(k, l − j)
}

≡ 0 0 ≤ j ≤ l.

(11)
From (11) and by using (4) it follows that

x̂(k, l +1) = A(k)

l
∑

i=0

E

{

x(k, l)ỹ(k, l − i)
}

E

{

ỹ2(k, l − i)
} ỹ(k, l − i). (12)

By splitting the sum in (12), it can be rewritten as

x̂(k, l +1) = A(k)
E

{

x(k, l)ỹ(k, l)
}

E

{

ỹ2(k, l)
} ỹ(k, l)

+ A(k)

l
∑

i=1

E

{

x(k, l)ỹ(k, l − i)
}

E

{

ỹ2(k, l − i)
} ỹ(k, l − i). (13)

Define the Kalman gain as

K (k, l) = A(k)
E

{

x(k, l)ỹ(k, l)
}

E

{

ỹ2(k, l)
} . (14)

Next, observe that substitution of (5) in (7) gives

x̂(k, l +1) = A(k)E
{

x(k, l)
∣

∣Yl (k)
}

. (15)

By applying the orthogonality principle on the estimate at l it can
be shown that

x̂(k, l) =

l
∑

i=1

E

{

x(k, l)ỹ(k, l − i)
}

E

{

ỹ2(k, l − i)
} ỹ(k, l). (16)

By substituting (14), (16) and (10) in (13) we obtain

x̂(k, l +1) = A(k)x̂(k, l)+ K (k, l)
(

|Y (k, l)|2 −Cx̂(k, l)
)

. (17)

It remains to derive a recursive expression for the Kalman gain
K (k, l) (14). By using (10), the model of the noisy speech power
spectrum (4) and equation (9), we can rewrite (14) as

K (k, l) = A(k)Qe(k, l)CT
E

{

ỹ2(k, l)
}−1

, (18)

where

Qe(k, l) = E
{(

(x(k, l)− x̂(k, l)
)(

(x(k, l)− x̂(k, l)
)T }

, (19)

is the variance of the estimation error. By using (4), (9) and (10) we
can compute

E
{

ỹ2(k, l)
}

= C
(

2Qe(k, l)+ Q̂(k, l)
)

CT , (20)

where
Q̂(k, l) = E{x̂(k, l)x̂(k, l)T }. (21)



Inserting (20) into (18)1

K (k, l) = A(k)Qe(k, l)CT
(

C
(

2Qe(k, l)+ Q̂(k, l)
)

CT
)−1

. (22)

From (19), (5) and (17) we obtain a recursive expression for the
variance of the estimation error

Qe(k, l +1) =
(

A(k)− K (k, l)C
)

Qe(k, l)
(

A(k)− K (k, l)C
)T

+

K (k, l)C Qe(k, l)CT K T (k, l)+

C Q̂(k, l)CT + E Qw(k, l)ET .

From (21), (19) and (5) it follows

Q̂(k, l +1) =
(

A(k)+ K (k, l)C
)

Q̂(k, l)
(

A(k)+ K (k, l)C
)T

+

2K (k, l)C Qe(k, l)CT K T (k, l)+ E Qw(k, l)ET .

4. IMPLEMENTATION OF THE ALGORITHM

To implement the estimator presented in section 3 there are a num-
ber of issues that have to be addressed. The algorithm is imple-
mented with pre-computed steady state Kalman gain in (17). To
deal with the constraint (6) we use the methodology proposed in
[7]. For each frame, the unconstrained estimate (16) is optimally
projected onto the state constraint surface if the constraint is vio-
lated. In the case we consider, it is easy to show that the optimal
projection is equivalent to setting the estimated variances to zero
when the constraint (6) is violated.

Next, the function as(k) is determined by an off-line estimation
procedure on a clean speech signal that consists of four different
speech utterances. The utterances, two from male and two from
female speakers are taken from the TIMIT database and downsam-
pled to 8 kHz. We obtain the magnitude square of the speech STFT
coefficients |S(k, l)|2 by using the discrete Fourier transform of the
signal frames extracted with a Hanning window of 256 samples and
use of an inter frame overlap of 50%. Given |S(k, l)|2 of the speech
signal at hand, we compute a(k) by solving the following optimiza-
tion problem

minas (k) ‖E{|S(k, l)|2}− x̂(k, l)‖2 (23)

for each k by using a nonlinear minimum search method. In order
to improve the performance of the estimator in the regions with a
high speech energy we do not update the estimate, when the a priori
SNR (estimated using the decision directed approach in [1] with the
Kalman estimate of the noise PSD), exceeds a certain threshold.

5. PERFORMANCE EVALUATION

The performance evaluation of the Kalman filtering based noise
tracking algorithm consists of two parts. First we show the tracking
capability of the algorithm for nonstationary white noise. We com-
pare the performance of the noise estimator based on Kalman filter
(17) with the minimum statistics (MS) noise estimator [3]. Second,
we use different noise estimation strategies in in the log spectral
amplitude (LSA) enhancement scheme [2] and perform an objec-
tive as well as subjective quality assessment of the enhanced speech
samples.

The speech signal used in the objective evaluations is con-
structed from five different speech utterances. The speech utter-
ances are taken from the TIMIT database and are outside the train-
ing set that was used in the off-line model estimation. The speech
signal is sampled at 8 kHz and degraded by various noise types with

1For a stable matrix A and observable matrix pair (A,C) the Kalman
gain (22) converges to a steady state value which can be pre-computed for
the given matrices A(k), E(k) and C(k) (see [5] for detailed treatment of
this issues in the standard Kalman filter setup).
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Figure 1: The mean over frequency of the noisy speech sample
power spectrum and the noise PSD estimates obtained with different
noise estimators.

SNR in the range [−5,10] dB. The noise signals are taken from the
Noisex92 database. We include white Gaussian noise, babble noise,
factory noise and car noise in the evaluations. The spectral analysis
is implemented with the Hanning window of 256 samples (32 ms)
and use of an inter frame overlap of 50%.

To show the tracking capability of the noise estimator based
on the Kalman filtering we degrade the speech signal with non-
stationary white Gaussian noise. The speech signal is degraded at
SNR 30 dB for the first 3.75 seconds of the signal. After that, the
noise level rises with the constant rate of 0.15 dB/frame up to 0 dB
SNR where it stays for the remaining part of the signal. To ease the
visualisation of the results, we adopted the procedure used in [3, 4]
and compute the average noise PSD estimate across frequency for
each frame, for the proposed method as well as for the MS method.
We emphasize that this frequency averaging is only done for pre-
sentation purposes. Neither the proposed method nor the MS noise
estimator exploits the a priori knowledge that the noise source in
this case is spectrally flat. It can be observed that the response of
the proposed estimator is faster than the MS estimator. For the in-
creasing noise power, the MS estimator lags behind with a delay
of D + V samples [3] where D is the size of the minimum search
window and V is the size of the subwindow (see [3] for details).
For the constant noise level of 0 dB both estimators give a good
estimate of the noise level. Next, we turn to natural noise sources
and consider speech signals degraded with babble, factory and car
noise, at various SNR levels. We compare the performance of the
LSA enhancement scheme [2] for different noise estimators. For
objective quality assessment we use the Symmetric Itakura-Saito
(I.S) distortion measure [8] and Segmental SNR measure [9]. Re-
sults are summarized in Tab. 1. In the first case no noise tracking
is performed (NNT in Tab. 1). In this case we take a snapshot of
the noise in the noise only region preceding the speech signal and
keep this value as the noise level estimate for the whole duration of
the signal. Next, we use MS noise estimator (MS in Tab. 1) and
finally the proposed noise estimator (KF in Tab. 1). We also give
values of the Symmetric I.S. and Segmental SNR for noisy speech
sample (NS in Tab. 1). The results of the objective quality asses-
ment show that both symmetric I.S. and Segmental SNR distortion
measures indicates improvement of the performance when the noise
estimator based on the Kalman filtering is used in the enhancement
scheme.

For subjective evaluation an OAB listening test was performed
with ten participants, the authors not included. We compare the per-



Segmental SNR
Input SNR Babble noise Factory noise Car noise

[dB] NS NNT KF MS NS NNT KF MS NS NNT KF MS
-5 -6.88 -4.72 -4.32 -4.74 -7.13 -4.27 -3.35 -3.67 -6.40 1.90 2.98 2.10
0 -5.14 -2.44 -2.04 -2.44 -5.42 -1.94 -1.24 -1.32 -4.40 4.94 6.10 5.11
5 -2.66 0.21 0.28 0.24 -2.96 0.56 1.07 0.72 -1.83 7.62 8.96 8.07
10 0.38 2.82 3.13 3.09 0.09 3.04 3.56 3.30 1.30 9.64 10.86 10.45

Symmetric Itakura-Saito distortion measure
Input SNR Babble noise Factory noise Car noise

[dB] NS NNT KF MS NS NNT KF MS NS NNT KF MS
-5 16526 12040 9516 10463 15272 3257 2101 2386 2516 126 58 76
0 6565 2829 1520 2306 5593 735 361 454 936 41 19 27
5 2217 745 295 509 1875 195 86 111 326 17 6 9
10 715 219 80 122 611 58 28 35 109 10 2 3

Table 1: Segmental SNR and Symmetric Itakura-Saito (I.S) distortion measure for babble, factory and car noise at various SNR levels using
different noise PSD estimators

noise source input SNR P value significant
babble 15 9.06*10−8 yes
noise 5 2.35*10−6 yes

factory 15 5.12*10−9 yes
noise 5 1.11*10−8 yes
car 15 1.01*10−8 yes

noise 5 2.35*10−8 yes

Table 2: Wilcoxon test results to verify the statistically significant
difference between the methods used in the listening test

formance of the LSA enhancement scheme with no noise tracking
with the performance of the LSA enhancement scheme when the
Kalman filtering based noise tracking method is used. In this listen-
ing test we used babble and factory noise at 5 dB and 15 dB and car
noise at 0 dB and 10 dB SNR. For each noise source and noise level
we presented listeners two female and two male sentences. The
listeners were presented first the noise free signal followed by the
two different enhanced signal in the randomized order, and this was
repeated three times for each series. For speech signals corrupted
with babble noise the proposed method was preferred above the no
noise tracking case in 71 % (15 dB) and 63 % (5 dB) of the cases,
for factory noise in 88 % (15 dB) and 84 % (5 dB) cases and for
car noise the Kalman filtering based noise tracking was preferred in
83 % (10 dB) and 94 % (0 dB). A statistical significance Wilcoxom
test [10] was used to test a statistical difference between the two
methods. The P-value of this test are given in Tab. 2. The results
presented in Tab. 2 show that for all noise sources and SNRs used in
the test the difference between methods is statistically significant.

6. CONCLUSIONS

We present an algorithm that provide an accurate estimate of the
noise power level, that is suitable for the real time implementation
and is of a low computational complexity. The method is based
on the Kalman filtering technique. Since the model does not fit
in the standard Kalman filtering setting, we derive a linear, recur-
sive estimator for the stochastic model of the noisy speech spec-
trum. We perform objective and subjective evaluation of the pro-
posed method. As results presented in section 5 show, the Kalman
based noise estimator has good noise tracking capabilities and lis-
tening test showed preference over the case when there is no noise
tracking. Although we apply this method in the LSA based speech
enhancement context, the Kalman filtering based noise estimation
method is very general and can be applied to any other speech en-
hancement system that requires a noise power spectral estimate,

e.g., codebook-driven methods [11] and subspace based approaches
[12].
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