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ABSTRACT

We treat the problem of designing a robust estimation filter
to recover a stationary random signal x[n] convolved with a
linear time-invariant (LTI) filter h[n] and corrupted by addi-
tive stationary noise, in the presence of spectra uncertainties.
Our approach is based on minimizing the worst-case differ-
ence between the MSE in the presence of uncertainties, and
the MSE of the Wiener filter that knows the correct power
spectra. The resulting filter, referred to as the minimax regret
filter, takes the entire uncertainty interval into account, as well
as the frequency response of the filter h[n]. We demonstrate
through an example that the minimax regret filter can often
lead to improved performance over traditional minimax MSE
approaches for this problem.

1. INTRODUCTION

Deconvolution is aimed at removing the affects of a system
on an input signal. A classical formulation of this problem
is to recover a filtered, noisy signal assuming knowledge of
the channel. This problem can be cast in the framework of
estimation in a linear model in which the goal is to estimate
the input signal x[n] from corrupted observations y[n] using a
linear time invariant (LTI) estimation filter, where the signal is
convolved with an LTI filter with impulse response h[n], and
corrupted by a stationary noise process w[n].

If the power spectra of the signal and noise are known,
then the deconvolution filter can be designed to minimize the
mean-squared error (MSE), leading to the well-known Wiener
filter [1]. However, if the power spectra are not completely
specified, then the solution minimizing the MSE can not be
obtained in general. An interesting problem that has attracted
considerable attention in the literature is that of designing ro-
bust Wiener filters that have reasonable performance over all
possible power spectra, in some region of uncertainty. The
predominant approach is to choose the filter that minimizes
the worst-case MSE over an appropriately chosen class of
power spectra [2, 3, 4, 5, 6].

In Section 3, we consider the case where the signal
and noise conform to a band uncertainty model defined by
frequency-dependent known lower and upper bounds. As we
show in Section 3.1, for this model, the standard minimax
MSE filter is a Wiener filter matched to the upper bound on
the power spectra, and is therefore overconservative. It also
does not take the complete uncertainty region or the impulse
response of the filter into account, since it depends only on
the upper bound of the uncertainty region.
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Based on the estimation framework developed in [7, 8, 9]
for the problem of estimating a finite-dimensional parameter
vector from finitely many observations, we develop a com-
petitive robust filter whose performance is uniformly close to
that of the Wiener filter, for all possible values of the unknown
power spectra. Specifically, in Section 3.2 we design a filter
to minimize the worst-case regret, which is the difference be-
tween the MSE of the filter, ignorant of the signal and noise
power spectra, and the smallest attainable MSE with a filter
that knows the power spectra. By considering the difference
between the MSE and the optimal MSE rather than the MSE
directly, we can counterbalance the conservative character of
the minimax MSE approach for this problem. In Section 4,
we demonstrate through an example that the minimax regret
approach can often lead to improved performance over tradi-
tional minimax MSE methods.

In the sequel, capital letters denote the discrete-time
Fourier transform (DTFT), e.g., H(ω) denotes the DTFT of
h[n], and Sx(ω) is the power spectrum of a random process
x[n]. The complex conjugate is denoted by (·)∗, and ˆ(·) de-
notes an estimated variable.

2. PROBLEM FORMULATION

We consider the basic deconvolution problem of recovering a
zero-mean stationary random process x[n] with power spec-
trum Sx(ω) from observations y[n], where the sequence y[n]
is a filtered, noisy version of x[n]:

y[n] = h[n]∗ x[n]+w[n]. (1)

Here h[n] is a known filter with DTFT H(ω), and w[n] is a
wide-sense stationary noise process independent of x[n], with
zero-mean, and power spectrum Sw(ω). Our objective is to
design a linear estimator x̂[n] = g[n]∗ y[n] of x[n], where g[n]
is the impulse response of the estimation filter.

To construct an estimator x̂[n] that is close to x[n], we may
seek the filter g[n] that minimizes the MSE E

{|x̂[n]− x[n]|2}.
For a given estimation filter g[n] with DTFT G(ω), the MSE
can be written as [1]

E(G,Sx,Sw)
4
=E

{|x̂[n]− x[n]|2} =
1

2π

∫ π

−π

(|1−G(ω)H(ω)|2Sx(ω)+ |G(ω)|2Sw(ω)
)

dω. (2)

If Sx(ω) and Sw(ω) are known, then the filter minimizing the
MSE is the Wiener filter [1]:

GW(ω) =
H∗(ω)Sx(ω)

Sw(ω)+Sx(ω)|H(ω)|2 . (3)



The smallest attainable MSE, which is equal to the MSE of
the Wiener filter, is

E(GW,Sx,Sw) =
1

2π

∫ π

−π

Sw(ω)Sx(ω)
Sw(ω)+Sx(ω)|H(ω)|2 dω. (4)

In many practical applications Sx(ω) and Sw(ω) may not
be known precisely, in which case the Wiener filter of (3) can-
not be implemented. One possible approach in this case is to
design a Wiener filter matched to the estimated power spec-
tra. However, if the true power spectra deviate from the ones
assumed, then the performance of the Wiener filter may de-
teriorate considerably [5]. Therefore, there is a need for a
robust Wiener filter whose performance is reasonably good
across all possible power spectra, in the region of uncertainty.

To reflect the uncertainty in our knowledge of Sx(ω) and
Sw(ω) we assume that they belong to the set D defined by

D = {Sx(ω),Sw(ω)|
l(ω)≤ Sx(ω)≤ u(ω),L(ω)≤ Sw(ω)≤U(ω)}, (5)

where the bounds l(ω),u(ω),L(ω) and U(ω) are known,
and l(ω),L(ω) ≥ 0. For simplicity, we further assume that
l(ω)|H(ω)|2 +L(ω) > 0.

The model D of (5) is reasonable when the power spec-
tra are estimated from the data. Specifically, suppose we es-
timate the signal power spectrum as S0

x(ω). We may then
assume that the true power spectrum Sx(ω) lies in an uncer-
tainty interval of length 2ε(ω) around S0

x(ω), where ε(ω) =
(u(ω)− l(ω))/2. The region specified by ε(ω) can be re-
garded as a confidence interval around S0

x(ω) and may be
chosen to be proportional to the standard deviation of S0

x(ω).
Given an uncertainty set, the most common approach for

developing robust Wiener filters is to seek a filter that min-
imizes the worst-case MSE in this region. However, as we
show in Section 3.2, the minimax MSE approach tends to be
overconservative and often does not lead to satisfactory per-
formance. To improve its performance, we consider, in Sec-
tion 3.2, a competitive approach, similar to that suggested in
[7, 8] for a finite-dimensional analogue of the Wiener filter-
ing problem. Instead of minimizing the worst-case MSE, we
suggest minimizing the worst-case regret with respect to the
optimal linear filter without uncertainty, where the regret is
defined as the difference between the MSE of a filter ignorant
of the true power spectra, and the optimal MSE attainable us-
ing a filter that knows the power spectra. The minimax regret
filter is again a Wiener filter matched to a “least-favorable”
pair of power spectra, which depend explicitly on the uncer-
tainty interval and on the DTFT of the filter.

3. MINIMAX DECONVOLUTION

3.1 Minimax MSE Wiener Filter
We begin by choosing the estimator that minimizes the worst-
case MSE over the set D defined by (5).

Since for all ω and for all power spectra in D ,

|1−G(ω)H(ω)|2Sx(ω)+ |G(ω)|2Sw(ω)

≤ |1−G(ω)H(ω)|2u(ω)+ |G(ω)|2U(ω), (6)

we have that

min
G

max
Sx,Sw∈D

E(G,Sx,Sw) = min
G

E(G,u,U), (7)

where E(G,Sx,Sw) is the MSE defined by (2). From (3), the
minimax MSE filter is therefore

G(ω) =
H∗(ω)u(ω)

u(ω)|H(ω)|2 +U(ω)
. (8)

The filter (8) is overconservative, since it minimizes the
MSE for the worst-possible choice of parameters. It also does
not take the full uncertainty region into account, or the fil-
ter h[n], but rather considers only the upper bound. To com-
pensate for the conservative nature of the minimax MSE ap-
proach, and design a filter that takes all the given knowledge
into account, we next develop a minimax regret filter.

3.2 Minimax Regret Wiener Filter
If the power spectra Sx(ω) and Sw(ω) are known, then the
filter G(Sx,Sw) minimizing the MSE is the Wiener filter of
(3), and the smallest attainable MSE E(GW,Sx,Sw) is given
by (4). Note that the optimal MSE is a function of the power
spectra Sx(ω) and Sw(ω). The regret R(Sx,Sw,G) is defined
as the difference between the MSE using a filter G(ω) and the
smallest possible MSE:

R(Sx,Sw,G) = E(G,Sx,Sw)−E(GW,Sx,Sw). (9)

To try and uniformly approach the optimal MSE in the
presence of power spectra uncertainties, we seek an estimator
that minimizes the worst-case regret:

min
G

max
Sx,Sw∈D

R(Sx,Sw,G), (10)

where D is defined by (5). The minimax regret filter, that is
the solution to (10), is given in the following theorem.

Theorem 1. Let x[n] be a zero-mean, stationary signal with
power spectrum Sx(ω) in the model y[n] = h[n] ∗ x[n]+ w[n],
where h[n] is a known filter with DTFT H(ω) and w[n] is a
zero-mean stationary noise process, independent of x[n], with
power spectrum Sw(ω). Let x̂[n] = g[n] ∗ y[n] denote an esti-
mate of x[n] where g[n] is a filter with DTFT G(ω), and let
D denote the set of power spectra defined by (5). Then the
minimax regret filter GREG(ω) that is the solution to

min
G

max
Sx,Sw∈D

{
E{|x̂[n]− x[n]|2}− min

G(Sx,Sw)
E{|x̂[n]− x[n]|2}

}

is given by

GREG(ω) =
H∗(ω)√

U(ω)+ l(ω)|H(ω)|2 +
√

L(ω)+u(ω)|H(ω)|2 ·

·
(

l(ω)√
U(ω)+ l(ω)|H(ω)|2 +

u(ω)√
L(ω)+u(ω)|H(ω)|2

)
.

Before proving the theorem we note that if L(ω) = U(ω)
and l(ω) = u(ω) so that Sx(ω) and Sw(ω) are known, then as
we expect, GREG(ω) reduces to the Wiener filter of (3).

Proof. We develop the minimax regret filter by first ex-
pressing G(ω) as |G(ω)|e jφ(ω), and noting that the regret
R(Sx,Sw,G) depends on φ(ω) only through the expression

|1−G(ω)H(ω)|2 = 1+ |G(ω)H(ω)|2
=−2|G(ω)H(ω)|cos(φ(ω)+ψ(ω)), (11)



where H(ω) = |H(ω)|e jψ(ω). The minimum over φ(ω) is
achieved when φ(ω) =−ψ(ω), in which case

|1−G(ω)H(ω)|2 = (1−|G(ω)H(ω)|)2. (12)

It remains to determine the optimal value of |G(ω)|, which is
the solution to

min
|G|

max
Sx,Sw∈D

1
2π

∫ π

−π
M (|G|,Sx,Sw)dω, (13)

where we defined

M (|G|,Sx,Sw) = (1−|G(ω)H(ω)|)2Sx(ω)

+|G(ω)|2Sw(ω)− Sw(ω)Sx(ω)
Sx(ω)|H(ω)|2 +Sw(ω)

. (14)

Since the constraint set D is separable in ω ,

min
|G|

max
Sx,Sw∈D

{
1

2π

∫ π

−π
M (|G|,Sx,Sw)dω

}
=

1
2π

∫ π

−π

(
min
|G|

max
Sx,Sw∈D

{M (|G|,Sx,Sw)}
)

dω. (15)

For a fixed ω , let g = |G(ω)|,h = |H(ω)|,σx = Sx(ω) and
σw = Sw(ω). Then, our problem becomes

min
g≥0

max
l≤σx≤u,L≤σw≤U

{
(1−gh)2σx +g2σw− σwσx

σxh2 +σw

}
,

(16)
where h ≥ 0, l = l(ω),u = u(ω),L = L(ω) and U = U(ω).
The solution to (16) can be obtained by similar arguments to
those used in [8], leading to the following lemma.

Lemma 1. The solution to the problem

min
g≥0

max
l≤σx≤u,L≤σw≤U

{
(1−gh)2σx +g2σw− σwσx

σxh2 +σw

}

(17)
is

g =
h√

U + lh2 +
√

L+uh2

(
l√

U + lh2
+

u√
L+uh2

)
.

(18)

The proof of the theorem then follows from combining
Lemma 1 with φ(ω) =−ψ(ω).

3.3 Wiener Interpretation of the Regret Filter
By direct substitution it can be shown that the minimax re-
gret filter can be interpreted as a Wiener filter matched to the
power spectra

Sx(ω) = α(ω)l(ω)+(1−α(ω))u(ω);
Sw(ω) = α(ω)L(ω)+(1−α(ω))U(ω), (19)

where

α(ω) =

√
L(ω)+u(ω)|H(ω)|2√

L(ω)+u(ω)|H(ω)|2 +
√

U(ω)+ l(ω)|H(ω)|2 .

(20)

Therefore, we can view the power spectra (19) as estima-
tors of the true, unknown power spectra. Specifically, the
signal spectrum Sx(ω) at a given frequency ω0, is estimated
as a weighted combination of the bounds u(ω0) and l(ω0),
where the weights depend explicitly on the signal and noise
uncertainty level at ω0, and on the magnitude of the DTFT
of the filter |H(ω0)|. The same holds true for the noise spec-
trum Sw(ω). Thus, in contrast with the minimax MSE fil-
ter, which is matched to power spectra that are equal to the
upper bound, the minimax regret filter takes both the upper
and lower bounds into account, as well as the DTFT H(ω).
Since the minimax regret filter minimizes the regret for the
power spectra given by (19), we may view these as the “least-
favorable” power spectra in the regret sense.

Some insight into the least-favorable power spectra can
be gained by considering the low and high SNR regions. If
l(ω)|H(ω)|2 ÀU(ω), then it can be shown that

Sx(ω)≈
√

u(ω)l(ω), (21)

which is the geometric average of the lower and upper
bounds. If, on the other hand, u(ω)|H(ω)|2 ¿ L(ω), then

Sx(ω)≈ l(ω)
√

L(ω)+u(ω)
√

U(ω)√
L(ω)+

√
U(ω)

. (22)

Similarly,

Sw(ω)≈




L(ω)
√

l(ω)+U(ω)
√

u(ω)√
l(ω)+

√
u(ω)

, U(ω)¿ l(ω)|H(ω)|2;
√

U(ω)L(ω), L(ω)À u(ω)|H(ω)|2.
(23)

4. EXAMPLE

We now illustrate the performance of the minimax MSE and
the minimax regret filters. Clearly, the behavior of these filters
depends on the values of the unknown power spectra. If, for
example, Sx(ω) = u(ω) and Sw(ω) = U(ω), then the min-
imax MSE filter will provide the best performance, since it
minimizes the MSE for this choice of power spectra. As sug-
gested in [8], one possible way of assessing the performance
of the filters, is to compute the MSE at the output of each
of the filters for the best possible choice of power spectra,
the worst possible choice, and the nominal (average) choice.
Obviously, the minimax MSE filter will optimize the perfor-
mance for the worst choice. However, as we will see in the
example below, the minimax regret filter often performs only
slightly worse than the minimax MSE filter in the worst case,
but can provide a substantial performance improvement for
the best choice of power spectra.

Consider the estimation problem represented by the
model (1), where x[n] is a zero-mean stationary first order AR
process with power spectrum

SO
x(ω) =

1

|1−ρe jω |2
(24)

for some parameter ρ , and w[n] is a zero-mean, uncorrelated
random process with variance σ 2, where we assume for sim-
plicity that σ 2 is known. The filter h[n] is an FIR filter:

h[0] = 1, h[±1] =−7/16, h[n] = 0, |n|> 1. (25)
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Figure 1: DTFT magnitude |H(ω)| of the filter given by (25).

The DTFT magnitude of the filter is depicted in Fig. 1.
We assume that the signal spectrum Sx(ω) is not known

exactly, however we know that l(ω) ≤ Sx(ω) ≤ u(ω) with
l(ω) = (1−α)Sx(ω) and u(ω) = (1 + α)Sx(ω), where 0 <
α < 1 is a parameter that defines the size of the uncertainty.

For any estimation filter G(ω) we can find the worst
choice of Sx(ω), denoted SWC

x (ω), that maximizes the MSE,
and the best choice of Sx(ω), denoted SBC

x (ω), that mini-
mizes the MSE. It is easy to see that the MSE defined by (2)
is minimized when SBC

x (ω) = l(ω) and is maximized when
SWC

x (ω) = u(ω), regardless of the filter G(ω).
In Fig. 2, we plot the MSE of the minimax MSE filter

(MX) of (8) and the minimax regret filter (RG) of Theo-
rem 1 as a function of the SNR defined by −10logσ2 for
ρ = 0.9, and α = 0.9. The MSE of each of the filters is plotted
for three choices of Sx(ω): the worst case Sx(ω) = SWC

x (ω),
the best case Sx(ω) = SBC

x (ω), and the nominal (true) value
Sx(ω) = SO

x(ω). As we expect, when Sx(ω) = SWC
x (ω), the

minimax MSE filter has the best performance. On the other
hand, when Sx(ω) = SBC

x (ω), the performance of the minimax
MSE filter deteriorates considerably. In this example, we may
prefer using the minimax regret filter over the minimax MSE
filter, since the loss in performance of the minimax MSE fil-
ter in the best case is much more significant then the loss in
performance of the minimax regret filter in the worst case.

In Fig. 3 we plot the magnitude of the DTFTs of the mini-
max regret filter, the minimax MSE filter, and the inverse filter
G(ω) = 1/H(ω) for an SNR of 0dB.
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