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ABSTRACT

In this paper, we consider frame expansions derived from
biorthogonal wavelet bases for building multiple descriptions
with low redundancy constraints. Such constraints rise the
problem of perfect reconstruction of the associated decom-
positions in the absence of quantization or channel errors,
which requires special attention and therefore will be detailed
in this work. We will show that several schemes that yield
perfect reconstruction are possible with the proposed strat-
egy. Moreover, when the resulting coefficients are corrupted
by quantization or channel errors, we employ a fast iterative
algorithm based on projections onto convex sets in order to
enhance the quality of the decoded images.

1. INTRODUCTION

Building multiple descriptions for image transmission over
error-prone channels without priority mechanisms, such as
Internet and cellular networks, has proved to be a very
promising error resilience technique [1]. A common prob-
lem in these networks is that of the transient channel shut-
downs, due to either network congestion, accompanied by
packet losses, or to deep error fades in wireless networks.
The idea behind multiple description coding is to create two
or several correlated representations of the source and take
advantage of the often available path diversity in communi-
cation systems, in order to provide the user with a minimum
reconstruction quality attainable when only one description
is received and enhanceable when several descriptions are
combined. The descriptions can either be built in the raw
domain of the data (voice, image, video) or from some trans-
formed versions of it, the latter approach being the most com-
mon [2], [3], [4].

In this work we address the problem of building de-
scriptions using a wavelet frame decomposition of a two-
dimensional signal. In particular, biorthogonal 9-7 wavelets
are employed in a corresponding oversampled filter bank
structure in order to create two descriptions of an image. This
structure has an inherent redundancy which can be exploited
into descriptions, in the same time providing us with shift in-
variance [5]. The proposed wavelet frame has an additional
feature which is the reduced redundancy achieved through
a further quincunx subsampling of the detail subbands. An
important problem when reducing the redundancy is that the
resulting representations may no longer provide perfect re-
covery [6], [7], [8]. We shall address this issue by consider-
ing the polyphase transfer matrices for the proposed schemes
and studying their invertibility in the frequency domain.

The outline of the paper is as follows: Section 2 presents

the framework for building two wavelet descriptions, high-
lighting the fact that in the two-dimensional case several pos-
sible schemes can be built for the proposed wavelet frame.
The problem of perfect reconstruction is addressed in Sec-
tion 3 by a frequency-domain study of the polyphase transfer
matrix. Section 4 presents an optimization technique based
on iterative projections for central decoder design. In Section
5 we provide some simulation results.

2. MULTIPLE DESCRIPTION FRAMEWORK

The proposed frame decomposition is derived from a clas-
sical biorthogonal wavelet basis. Consider the impulse re-
sponses (h[n])n∈Z and (g[n])n∈Z of the analysis low-pass and
high-pass filter banks respectively, associated to such a de-
composition. When applied to each of the dimensions, we
obtain the following subband coefficients:

a[n,m] = å
k,l

x[k, l]h[2n− k]h[2m− l]

dh[n,m] = å
k,l

x[k, l]h[2n− k]g[2m− l]

dv[n,m] = å
k,l

x[k, l]g[2n− k]h[2m− l]

dd[n,m] = å
k,l

x[k, l]g[2n− k]g[2m− l]

(1)

where a stands for the approximation subband coefficients at
a given resolution, dh, dv, dd denote the horizontal, vertical
and diagonal detail subband coefficients at the same resolu-
tion level and x is the approximation sequence at the previous
finer resolution. For simplicity, we have omitted here the res-
olution level index j which varies between 1 and J ∈ N

∗.
Note that the two-dimensional filter bank applied in (1) is

dyadic and separable. We propose an overcomplete represen-
tation by considering a second decomposition of the form:

a(s,s′)[n,m] = å
k,l

x[k, l]h[2n+ s− k]h[2m+ s′− l]

dh(s,s′)[n,m] = å
k,l

x[k, l]h[2n+ s− k]g[2m+ s′− l]

dv(s,s′)[n,m] = å
k,l

x[k, l]g[2n+ s− k]h[2m+ s′− l]

dd(s,s′)[n,m] = å
k,l

x[k, l]g[2n+ s− k]g[2m+ s′− l]

(2)

where we have introduced the shift parameters s and s′,
which belong to {0,1}. It should be noted that, in our ap-
proach, for j < J we keep the usual non redundant decom-
position whereas, for the last resolution level, Eq. (2) is used



where s and s′ are not equal to 0 simultaneously. In other
words, the redundancy is only introduced at the last level of
the subband decomposition.

Transmitting the entire set of coefficients resulting from
Eqs. (1) and (2) would still introduce a high redundancy.
This would obviously lead to a high reconstruction quality in
any situation (both descriptions being received or only one of
them) but such a solution remains computationally and rate-
wise virtually unacceptable. Therefore we propose a subsam-
pled version of this structure, having only a slightly higher
redundancy than the critically subsampled decomposition.

In the subsampled schemes that we build, not all choices
of s and s′ lead to frame decompositions, but we shall prove
in the following that some of them do. Having a frame de-
composition enables the perfect reconstruction of the signal
in the absence of quantization or transmission errors (channel
noise).

Let us now propose several multiple description schemes
each corresponding to a specific subsampling in Eqs. (1) and
(2). Our main guideline is to build two balanced descriptions,
each containing some of the coefficients from each represen-
tation (the original one and the shifted one).

In order to provide acceptable side reconstructions, we
aim at keeping the main image features in each description.
Therefore we shall not perform a further subsampling on the
approximation subbands in each of the representations. In
turn, the detail subbands are quincunx subsampled. In this
manner the overall redundancy only depends on the last level
of decomposition and amounts to the number of additional
approximation coefficients. Thus, the coarser the last resolu-
tion level is, the lower the redundancy we get.

Recall that the quincunx sampling of a 2-D field
(x[n,m])n,m leads to two polyphase components:

x(q)[n,m] = x[n+m+q,n−m] (3)

where q ∈ {0,1}.
As noticed in the former section, the two representations

(1), (2) are identical except for the last level of decompo-
sition. Considering Eq. (3), we build two descriptions as
follows:
1. Description I is formed by the set of coefficients CI

J and

the detail subbands {dh(0)
j , dv(0)

j , dd(0)
j } defined at reso-

lution levels j ∈ {1, . . . ,J−1};
2. Description II contains the set of coefficients CII

J as well
the other quincunx polyphase components of each detail
subband: {dh(1)

j , dv(1)
j , dd(1)

j }, for j ∈ {1, . . . ,J−1}.

Here, we have denoted by CI
J (resp. CII

J ) the set of all sub-
band coefficients at the coarsest resolution in the first (resp.
second) description. These sets will be of the form:

CI
J = {aJ,(0,0), dh(p1)

J,(r1,r′1)
, dv(p2)

J,(r2,r′2)
, dd(p3)

J,(r3,r′3)
}

CII
J = {aJ,(s,s′), dh(p4)

J,(r4,r′4)
, dv(p5)

J,(r5,r′5)
, dd(p6)

J,(r6,r′6)
}

where pi ∈ {0,1}, i ∈ {1, . . . ,6}, denotes the selected quin-
cunx polyphase component for the i-th detail coefficient se-
quence at resolution level J. Also, for all i ∈ {1, . . . ,6}, we
have either (ri,r′i) = (0,0) or (ri,r′i) = (s,s′). In other words,
at the coarsest level, the detail sequences in each description

are obtained as quincunx subsampled detail subbands from
the original and one shifted decomposition.

In this paper we consider two of the possible overcom-
plete expansions, based on translated filters. The first one
is given by s = s′ = 1, and we shall denote it later on by
the index (1,1). In this case we obtained only two possible
sets of wavelet subbands that provide perfect reconstruction.
These are given by the whole critically sampled decomposi-
tion from Eq. (1) to which we added the approximation sub-
band from Eq. (2) or the similar structure considering all of
the second basis coefficients and the approximation from the
first basis as redundancy. These schemes are obviously com-
pletely recoverable in the absence of quantization since they
include the critically sampled decomposition. Moreover, the
study that we conducted led to the conclusion that the recon-
struction error in these two redundant schemes is below the
one obtained from the critically sampled decomposition. In
this manner the central decoder does exploit the introduced
redundancy in order to increase the quality of the reconstruc-
tion. It is worth noting that the so-obtained combinations do
not facilitate the building of balanced descriptions, as will be
shown in Fig. 3.

A more interesting case is when s = 1− s′. For each of
these combinations we obtain at least 12 schemes that can be
perfectly recoverable. These 12 schemes also yield a smaller
reconstruction error as compared with the critically sampled
scheme. In the next section we present the framework that
led to these conclusions.

3. PERFECT RECONSTRUCTION

3.1 Polyphase formulation

By discarding some of the detail coefficients, the global sys-
tem no longer has a frame structure for all combinations of
polyphase components in the detail subbands. It is therefore
important to identify the combinations which ensure perfect
reconstruction. To this end we study the polyphase transfer
matrix of our system.

By passing into the frequency domain and using ma-
trix notations, we re-write the convolutions/decimations in
Eqs. (1) and (2). Let

M0(w ) =

[
H0(w ) H1(w )
G0(w ) G1(w )

]
(4)

be the polyphase matrix corresponding to the filter bank op-
erating along one of the dimensions. H0 and H1 are the two
polyphase components of H:

H0(w ) =
1
2
[H(

w
2

)+H(
w
2

+ p )]

H1(w ) =
e

ıw
2

2
[H(

w
2

)−H(
w
2

+ p )]

(5)

and similar notations are used for G. Shifting by 1 the im-
pulse responses leads to a polyphase transfer matrix of the
form:

M1(w ) =

[
H1(w ) eıw H0(w )
G1(w ) eıw G0(w )

]
. (6)

Thus, the polyphase transfer matrix for the 2D separable
representation in Eq. (1) or Eq. (2) is given by the Kronecker
tensor product: M(r,r′)(w x, w y) = Mr(w x)⊗Mr′(w y), where



(r,r′) = (0,0) or (r,r′) = (s,s′). The global transfer equation
of our system can be written as:

[
C(0,0)(w x, w y)
C(s,s′)(w x, w y)

]
=

[
M(0,0)(w x, w y)
M(s,s′)(w x, w y)

]
X (w x, w y) (7)

where X (w x, w y) is the vector of the Fourier transforms of
the 4 polyphase components of the input image: (x[2n −
k,2m− l])n,m with (k, l) ∈ {0,1}2. The subband coefficient
vector on the left-hand side of Eq. (7) contains the 4-
dimensional vector of the Fourier transforms of the coeffi-
cients of the first representation in the upper part and from
the second one in the lower part. By putting emphasis on
the quincunx polyphase components of the coefficients as de-
fined by Eq. (3), Eq. (7) can be rewritten under the form:



C
(0)
(0,0)

(w x, w y)

C
(1)
(0,0)

(w x, w y)

C
(0)
(s,s′)(w x, w y)

C
(1)
(s,s′)(w x, w y)




=

[
M̃(0,0)(w x, w y)

M̃(s,s′)(w x, w y)

][
X (0)(w x, w y)

X (1)(w x, w y)

]
(8)

where, for (r,r′) ∈ {(0,0),(s,s′)},

M̃(r,r′)(w x, w y) =

M̃

(0)
(r,r′)(w x, w y) M̃

(1)
(r,r′)(w x, w y)

M̃
(1)
(r,r′)(w x, w y) eı(w x+w y)M̃

(0)
(r,r′)(w x, w y)


 (9)

with

M̃
(0)
(r,r′)(w x, w y) =

1
2
(M(r,r′)(n x, n y)+M(r,r′)(n x + p , n y + p ))

M̃
(1)
(r,r′)(w x, w y) =

eın x

2
(M(r,r′)(n x, n y)−M(r,r′)(n x + p , n y + p ))

with n x = (w x + w y)/2 and n y = (w x− w y)/2. In the left-hand
side of Eq. (8), we end up with a subband coefficient vec-
tor having 16 components while both vectors X (q)(w x, w y),
q ∈ {0,1}, have 4 components. Among the subband coef-
ficient components, we shall keep only 10: the 4 approxi-
mation components and 6 detail ones. Once this choice has
been made, let us denote by M̄ (w x, w y) the submatrix of
size 10 × 8 formed by the corresponding selected lines of
the polyphase transfer matrix in Eq. (8). The perfect recon-
struction of the proposed scheme is guaranteed if and only
if M̄ (w x, w y) is left-invertible for all (w x, w y) ∈ [0,2p )2. In
the following we designate this matrix as the quincunx poly-
phase transfer matrix.

3.2 Invertibility of the polyphase transfer matrix

The left invertibility of the polyphase transfer matrix can be
studied by considering its singular value decomposition. A
necessary and sufficient condition for perfect reconstruction
is that none of its eight singular values vanishes on the unit
bi-circle. For the three possible combinations of s and s′ in
Eq. (2), we have studied the evolution on the unit bi-circle
of the minimum singular values of each quincunx polyphase
transfer matrix corresponding to one of the considered low-
redundancy schemes. It must be pointed out that all the re-
sults presented subsequently have been obtained by using
classical 9-7 biorthogonal filters.

Considering the shift of the filter impulse responses by
(1,1), we show in Fig. 1 the variation w.r.t. frequency of the
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Figure 1: Minimum singular value v of the quincunx polyphase
transfer matrix as a function of frequency for schemes: DI ∪DII =
{a(0,0),dh(0,0),dv(0,0),dd(0,0),a(1,1)} (top) and the critically sam-
pled decomposition (bottom).

minimum singular value of the matrix M̄ (w x, w y). The in-
vertibility of the system is guaranteed, since for all (w x, w y)∈
[0,2p ) the minimum singular value is nonzero. In Fig. 2 we
also show a less obvious combination of polyphase quincunx
detail subbands, that yields perfect reconstruction, as well as
a combination that does not.

For two of the schemes that provide us with perfect re-
construction, we build the two descriptions, as explained in
Section 2. These will be denoted by DI and DII in Figs. 1
and 2. The first scheme corresponds to (s,s′) = (1,1) and
it has the following distribution of the coefficients between
the two descriptions at the last level: DI

(1,1) = {a(0,0),dh(0)
(0,0)

,

dv(0)
(0,0)

,dd(0)
(0,0)

} and DII
(1,1) = {a(1,1),dh(1)

(0,0)
, dv(1)

(0,0)
,dd(1)

(0,0)
}.

In this case, the perfect reconstruction that is reflected by
Fig. 1 can be deduced more directly by observing that the
a(1,1) approximation sequence comes in addition to the de-
composition onto a basis and thus the overall decomposition
is clearly invertible.

The second perfect reconstruction scheme is obtained
with (s,s′) = (0,1) and it is formed by the following descrip-

tions: DI
(0,1) = {a(0,0),dh(0)

(0,1)
, dv(0)

(0,0)
,dd(0)

(0,0)
} and DII

(0,1) =

{a0,1,dh(1)
0,1, dv(1)

0,0,dd(1)
0,0}. This combination also leads to a

smaller reconstruction error than in the critically sampled
case.

It can be noticed that the study of the singular values of
the matrix M̄ (w x, w y) in each situation provides a means to
evaluate the mean square reconstruction error. By assuming
that the quantization noise is white, it can be shown that the
two proposed oversampled schemes lead to a smaller recon-
struction error than a critically subsampled 9-7 filter bank
structure.
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Figure 2: Minimum singular value v of the quincunx polyphase
transfer matrix as a function of frequency for schemes: DI ∪DII =
{a(0,0),dh(0,1),dv(0,0),dd(0,0),a(0,1)} (top) and of one of the com-
binations that do not yield perfect reconstruction (bottom).

4. OPTIMIZED LOSSY RECONSTRUCTION

At the central decoder we employ a fast iterative algorithm
that enhances the quality of the reconstruction. This algo-
rithm is useful both when the two descriptions are received or
when only one of them is available. This algorithm detailed
in [9], is based on the minimization of a convex quadratic ob-
jective function under convex constraints. The main idea is
to consider the quantization constraints as prior information
on the image, corresponding to convex sets:

S j = {x | −
d
2
≤ f [ j]Tx− â [ j] ≤

d
2
} (10)

where d is the quantization step, x is the original image, â [ j]
is a quantized wavelet coefficient and f [ j] is a vector cor-
responding to the function used to compute this coefficient.
The optimal solution will be a point in the intersection of all
the so-defined convex sets. It is given by the projection on
this intersection of a reference image x0 which is an initial
estimate of the original one. In the case of the central decoder
we choose it as a weighted sum of the recovered images after
decoding the two descriptions.

The iterative algorithm allows for parallel computing and
offers fast convergence properties.

5. EXPERIMENTAL RESULTS

We present some of the test results for the schemes D(1,1)
and D(0,1), on the 512 × 512 gray scale “Barbara” image.
We have performed a three-level wavelet decomposition with
biorthogonal 9-7 filter banks for both schemes. The quan-
tized coefficients have been encoded with the EZBC coder,
[10]. In Fig. 3 we have plotted the rate-distortion curves
for the two schemes before the iterative reconstruction (Init.
Scheme) and after it (Opt. Scheme). In the top graph
we present the central decoders for Scheme 1 (D(1,1)) and
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Figure 3: Rate-Distortion evaluation of the two schemes for “Bar-
bara”: central (top graph) and side (bottom graph) decoders.

Scheme 2 (D(0,1)). They exhibit similar performances. In
the second graph is highlighted the importance of having
balanced descriptions. The two side decoders of Scheme
2 exhibit lower performances than the first side decoder of
Scheme 1, but closer quality between each other, which
makes for a preferable tradeoff.
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