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ABSTRACT
A new simple distance measure has been proposed in which
each vector element is weighted in the distance calculation
according to its importance as determined by taking its statis-
tics into account. In order to reflect the characteristics of the
class, the element-significance factors are calculated based
on intraclass variances and mean values of vector elements
and utilized in the distance measure. The proposed distance
measure has been applied to the face detection system and
the cephalometric landmarks identification system which we
developed in other work. Improved performances in image
classification have been demonstrated.

1. INTRODUCTION

Vector quantization (VQ) is widely used in various applica-
tions such as data compression systems and image recogni-
tion systems. VQ is such a technique that an input vector
is mapped into the class which has the maximum-likelihood
code vector to the input vector. In the process of vec-
tor matching, some types of distance measures are utilized
to evaluate the dissimilarity between the input vector and
code vectors. Euclidean distance and Manhattan distance are
widely used due to their simplicity.

In VQ-based image recognition systems, the feature vec-
tors are generated by extracting the characteristic features
from images. If two images are similar to each other, two fea-
ture vectors generated from them are expected to be mapped
closely in the vector space. Therefore, the distance measure
plays an important role in classifying images in the vector
space. In the vector representation, it is often the case that the
relative importance of each vector element varies. Namely,
if some vector elements represent the critical features of an
image, then the elements are more important than others. In
such a case, the relative importance among elements must
be taken into account in the distance measure. However, the
conventional Euclidean distance and Manhattan distance do
not work for this purpose because they treat all elements with
an identical weight. In order to accommodate to the issue,
weighted distance measures have been proposed, where both
interclass and intraclass variances in vector elements are uti-
lized to determine the element weight factors in distance cal-
culation [1, 2].

The purpose of this paper is to propose a new weighted
distance measure where only the intraclass statistical charac-
teristics are taken into account to determine the weight fac-
tors in the distance calculation. Only the variances and mean
values of vector elements within a certain class of sample
vectors are utilized to determine the weight factors. There-
fore, the procedure is very simple. We applied the proposed
measure to the VQ-based face detection system [3, 4] and to

the cephalometric landmarks identification system [5], and
the improved performances have been demonstrated.

2. NEW DISTANCE MEASURE

In this section, how the weighting factors are determined
from the statistical distribution of samples. In this paper,
Manhattan distance :

n

∑
i=1

|xi − ti|,

is utilized as the basis of the new weighted distance measure.
Here xi and ti are the i-th elements of the input vector and the
template vector (code vector), respectively, and n is the vec-
tor dimension. In the following, we introduce two important
parameters : the significance index si and the significance
factor Si. si is an index related to the significance of the i-th
vector element and is derived from the statistical data of ti,
i.e. from its standard deviation σi and mean value µi. Si is a
factor that determines the weight in the distance measure and
is obtained by performing a non-linear transformation on si.

2.1 Concept of Significance Index
Since the features of a certain class exist in its own statistics,
we define si in terms of only the standard deviation σi and
the mean values µi of the element ti within the class.

Now, we wish to define the meaning of “class” more
clearly. Consider the problem of classifying input images
into the class of faces or non-faces as in Refs [3, 4]. Within
the class of faces, there exist a number of groups each rep-
resenting a particular type of faces like round faces, long
faces, etc. The statistical characteristics may vary from one
group to another. Therefore, the significance index is deter-
mined for each group and not for the entire class of faces.
Then, index “i” refers to each group in the class. In order
to form groups within the same class, we employed the k-
means clustering algorithm. In the following, σi and µi are
calculated for each cluster (group) in the class. Hereafter, the
term “class” refers to a cluster or a group as defined in this
paragraph.

Next, we consider what determines the relative impor-
tance of elements in vectors belonging to the same cluster.
The significant elements are those that represent the charac-
teristic features of the cluster. Therefore their values would
be stable. In other words, its variance would be small. We
propose a basic assumption that σ (standard deviation of an
element) is the primary index representing its significance.
Namely, the smaller the σ is, the more significant the ele-
ment is. However, σ alone is not a good significance index
because σ tends to increase as the mean (µ) gets larger. Such
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Fig. 1. Correlation between the standard deviation and the
mean of vector element. These data are shown for three cen-
troid vectors from clusters which were deduced from 300
face template vectors using K-means algorithm. One vec-
tor (PPED vector [5]) has 64 elements.

Table 1. Significance of vector element as related to the com-
bination of standard deviation (σ ) and mean (µ).

σ µ significance
small large more significant
small small average
large large average
large small less significant

a relationship is visible in Fig. 1. However, the point is that a
large scattering of data is observed in the nearly-linear rela-
tion between σ and µ .

Our basic idea is that the very spread of data in Fig. 1 in-
dicates the significance index of each element. If an element
has a σ value smaller than the average of σ corresponding
to the µ value, the element is regarded as significant because
its statistical distribution is tighter than the average. On the
contrary, if σ is larger than the average, then the element is
regarded as less significant. Therefore the quantity :

si ≡
σi

µi
,

can be a reasonable candidate for the significance index of i-
th element. This represents the significance normalized to the
mean value. This idea is illustrated in Table 1 which shows
how the values of σ and µ are related to significance.

We also introduce another definition of significance index
as :

s′i ≡ σi(
σi

µi
) =

σ2
i

µi
.

Here, σi is the primary index that represents the significance
of the element. And the normalized significance σi/µi is
multiplied on σi in order to take the geometrical average of
these two indexes. This will strengthen its meaning to better
represent the significance of the element. In Fig. 2, the two
proposed significance indexes, si and s′i, are plotted as func-
tions of σ . In (a), si decreases slightly with decreasing σ
down to around 7–8, but increases below that point. This is
in contradiction to our basic assumption that σ is the primary
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Fig. 2. Proposed two significance indexes si (a) and s′i (b) as
functions of σ .

significance index. Since larger values of σ and si mean they
are less significant, si must monotonically decrease with σ .
However, in (b) a good monotonic relation is seen between
si and σ . These observations suggest that the definition of
s′i would be a better choice as the significant index. We will
demonstrate this by experiments.

2.2 Significance Factor Si Determined from Significance
Index si

Now, we introduce standardized indexes for si (s′i) as in the
following :

ŝi = − si − s̄
Σs

, ŝi
′ = − s′i − s̄′

Σs′
.

Here s̄ (s̄′) and Σs (Σs′ ) are the mean ant the standard devia-
tion of si (s′i), respectively. We put minus signs to indicate a
larger ŝi (s′i) means it is more significant.

In order to correlate the standardized significance index
ŝi (ŝi

′) to weight factors of elements, we introduce a non-
linear transformation to ŝi (ŝi

′). The sigmoidal function is
employed as in Eq. (1) for this purpose :

Si =
1

1+ e−pŝi
, S′i =

1
1+ e−pŝi

′ , (1)

where p is a parameter to control the slope of the function,
as shown in Fig. 3. We call Si and S′i the significance factors
which are used to determine the weight factors in the distance
measure.
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Fig. 3. Sigmoidal function used to transform si to Si.

2.3 Proposed Weighted Distance Measure
The new weighted distance measure proposed in this work is
defined using the significance factor Si (S′i) as in Eq. (2) :

d ≡
n

∑
i=1

|xi − ti|
σi

Si or d ≡
n

∑
i=1

|xi − ti|
σi

S′i. (2)

|xi − ti| is divided by σi because the contribution from each
element difference to the total distance need be equalized.
The difference between the elements must be evaluated tak-
ing its statistical characteristics into account. Therefore the
difference in the element values normalized to the standard
deviation σi, we believe, is a reasonable choice in this regard.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed new weighted measure was applied to two
systems, the face detection system [3] and the cephalomet-
ric landmarks identification system [5]. As a vector genera-
tion algorithm, we employed Projected Principal-Edge Dis-
tribution (PPED) [5] which uses principal direction edges
extracted from an image. In this algorithm, a 64x64-pixel
gray-scale image is converted to a vector. The distances be-
tween the input vector and the centroid vectors of the clus-
ters are calculated. In this calculation, only centroid vectors
of clusters are utilized as template vectors since the proposed
distance measure already contains the features of the cluster.
Therefore, the number of the clusters is equal to the number
of vectors actually used in the template matching. In this re-
spect, the number of template vectors has been reduced dras-
tically by using the new distance measure.

3.1 Face Detection System
In the face detection system developed in Ref. [3], face im-
ages and non-face images are utilized as template images. If
the vector of an input image is closer to a template vector in
the face images than those in the non-face images, the area
of the image is regarded as a face area. The experimental
results are demonstrated in Fig. 5. The results are compared
for two cases, one with the weighted distance measure using
si (= σi/µi) and one with the weighted distance measure us-
ing s′i (= σ2

i /µ). Here the number of clusters was chosen as
10. The average number of face samples in each cluster was
about 30 which is sufficient to derive statistical parameters.
In these results, only face segmentation is carried out and no
verification processing is conducted. This is why so many
false positives are still remaining.
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Fig. 4. Results of landmark identification with Manhattan
distance and weighted distance.

The results shown in (a) and (d) are comparable to those
with Manhattan distance. In the work of Ref. [4], the den-
sity rule, which remains only high-density areas of the face
candidates, was employed to reduce the number of false pos-
itives. In this experiment, however, the number of false posi-
tives was effectively reduced, without using the density rule,
by just increasing the value of p. Furthermore, better perfor-
mance was obtained when the distance measure using s′i in-
dex was employed. The results with s′i index were fairly sta-
ble with the increase in the value of p (the results with p = 30
are almost the same as those of with p = 10). In comparison
between the results in (c) and (f), only one face was failed
to be detected in (f), while two faces were missed in (c). In
addition, false positives were effectively reduced in (f). Such
an effective elimination of false positives has been achieved
by just using the new distance measure without employing
advanced algorithms such as the multiple-clue method [3] or
the density rule [4]. When the false positives are reduced in
the segmentation stage by using the proposed distance mea-
sure, the computation load in the verification process using
the algorithm proposed in Ref. [6] will be greatly reduced.

3.2 Cephalometric Landmark Identification System

The system developed in Ref. [5] searches the specific
anatomical points in cephalometric radiographs. In the sys-
tem, the minimum distance point is identified as the target
point. This time, we searched for Sella, which lies in the
center of the pituitary grand. The results of cephalomet-
ric landmark identification employing the weighted distance
measure using s′i index are shown in Fig. 4. The minimums
of distances occur at two locations in the radiograph, one is
at the true Sella and the other at the false Sella. In the case of
Manhattan distance, the two minimum values are almost the



(a) si index (p = 0.5) (b) si index (p = 3) (c) si index (p = 10)
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Fig. 5. Results of face detection with weighted distance by two indexes, si (topside) and s′i (downside). p is a parameter as in
Eq. (1)

same. Actually, the false Sella was detected by the system.
In order to eliminate such an error, a macro vision search al-
gorithm in which the search is carried out at two different
resolutions was proposed in Ref. [5]. In the case of the new
weighted distance the minimum value is clearly larger for
the false Sella than for the true Sella. Therefore, the system
identified the correct location of Sella without the macro vi-
sion search algorithm. We can conclude that the introduction
of the proposed weighted distance measure can simplify the
procedure of image recognition.

4. CONCLUSION

We have presented a weighed distance measure which uses
newly proposed weighting scheme. This scheme calculates
the significance factor for each vector element taking its
statistics into account. Presented results show that the pro-
posed distance measure is capable of solving various prob-
lems encountered in image classification tasks which have
been solved by using advanced algorithms.
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