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ABSTRACT

In this communication the use of AR modelling in the estimation
of cubic phase coupling is studied. After obtaining the trispectrum
of an harmonic signal with cubic phase couplings, the parametric
modelling is used to design a method that models this trispectrum
and allows the locatation of the cubic couplings. This method is
based on a twofold AR modelling of the data using their fourth-
order cumulants, such as, after the extraction of the two sets of
coefficients, called frequency and sum coefficients, the modelled
trispectrum is built and the phase coupling are located as the peaks
in this trispectrum. A frequency selection method is proposed to
overcome the problems asociated to the maximum-detection algo-
rithms in the trispectral domain, which also reduces significantly
the computational burden necessary to find these maxima. Practi-
cal conditions of implementation and the limitations of using this
approach are showed and discussed in simulations.

1. INTRODUCTION

In some sitiations, signals with harmonic componentes present con-
tributions at frequencies that are sums and/or differences of other
components. When such type of phenomenon are the result of n-
order nonlinearities, this is called phase coupling. Specifically, it is
said that n + 1 terms of a harmonic signal constitute a phase cou-
pling when one of its frequencies is the sum of the others and its
phase is, at the same time, the sum of the others phases [3]. If only
the first of the two previouse conditions occurs then it is said that the
n + 1 frequencies are harmonically related. In certain applications
[3] it is necessary to find out if n +1 harmonically related frequen-
cies are actually phase coupled. An example of this is the separation
between direct and multiple scattering when two or more echo cen-
ters interacting themselves in radar scattering [5]. Due to the fact
that the power spectrum removes all phase information, a second
order analysis of this signal cannot solve the problem and it is nec-
essary to use n-order statistics. Although quadratic phase coupling
has received great interest in the literature and bispectrum autorre-
gresive modelling has been used in practical problems to obtain the
coupled frequencies [4], the cubic case has received less attention,
principally due to the computational complexity that a direct esti-
mation of the trispectrum (the spectral function that characterize the
fourth-order statistic) possesses. This communication analyses the
detection of cubic phase coupling in harmonic signals using autor-
regresive (AR) modelling of the trispectrum, which reduce greately
the computational complexity) and proposes a practical procedure
to obtain the coupled frequencies.

In this communication, after the introductory section, the sig-
nals are defined in Section II, where their fourth-order cumulants
and trispectrum are also calculated. The AR modelling is used in
Section III to build a trispectrum with the same maxima that the
real one. An efficient frequency detection method that avoids the
search of maxima in the tridimensional domain of the trispectrum
is presented in this section as well. Two different AR methods are
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studied in Section IV via simulations, where the ability of the pro-
posed approach to detect and locate the cubic phase couplings are
tested. The communication finishes with the principal conclusions.

2. CUBIC PHASE COUPLING

Let us consider a harmonic signal such as:

x(n) = ∑
i

Aie
j(νin+ψi) (1)

where the amplitudes Ai are positive real constants, the frequencies
νi are constant in the interval [0,2π) and the phases ψi are random
variables uniformly distributed in [0,2π). It is said that four fre-
quencies form a cubic phase coupling when:

ν4 = ν1 +ν2 +ν3 and ψ4 = ψ1 +ψ2 +ψ3 (2)

So that, distinguishing the contribution of cubic couplings, the
above signal can be written as:
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with:
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k3 (4)

for k = 1, ...,t.
The 4t frequencies in the first term correspond to t cubic phase

couplings, while the r frequencies of the second term constitute oth-
ers possible frequencies, which either are not coupled or are not
cubically coupled (but can be quadratically, for example).

Power spectrum of this signal treats both kinds of frequencies in
the same way, therefore it cannot distinguish when four frequencies
form a cubic phase coupling or when they only are harmonically
related.

However, the fourth-order statistic of this signal is indeed able
to distinguish both kinds of frequencies. This can be shown through
the fourth-order cumulant series of this signal:
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where S3 is the set of all possible permutations of the set (1,2,3)
and x∗(n) represent the complex conjugate of x(n). Likewise, the
trispectrum of this signal is easy calculated and the result is:
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From this equation, it can be seen that the trispectrum of a signal
following (3) is null in all its domain except in those frequencies
corresponding to the individual frequencies of the cubic phase cou-
plings, where it will be infinite. Therefore, a peak in the trispectrum
indicates the existence of a cubic coupling, and its coordinates indi-
cate the individual frequencies of this coupling.

As the direct estimation of the trispectrum using Fourier type
methods needs a big calculus esfort and possesses great limitations
in the resolution [3], AR modelling is used to build a trispectrum
with similar properties than the real one that appears in (6). This
modelling looks for an adequate reproduction of the peaks of the
trispectrum, so it is not necessary that modeled and the real trispec-
trum be equal out of the peaks. This happens in a lot of AR mod-
elling applications, like in speech, where is the goal is to model cor-
rectly the peaks but not the valleys in the power spectrum. The way
to achieve it in an efficient manner is showed in the next section.

3. AR MODELLING OF CUBIC PHASE COUPLING

In order to apply AR modelling to the signals given in (3), two sets
of AR coefficients are defined in this section. With these coeffi-
cients, that verify certain linear systems of equations, a trispectrum
that models properly the one in (6) is built. The first of these sys-
tems is:

p

∑
i=0

a1(i)cx
4(m− i,n,q) = 0 (7)

for n,q = 0, . . . , p and m = 1, . . . , p, where p ≥ 3t, and t being the
total number of coupled frequencies. In order this first set of coef-
ficients, called set of frequency coefficients, to hold the following
expression must be satisfied:

A1(ω)|ω=νc
ks

=
p

∑
i=0

a1(i)e− jνc
ksi = 0 (8)

for k = 1, . . . ,t and s = 1,2,3. This implies that the Fourier trans-
form annuls at the individual coupled frequencies. Therefore, the
transfer function yields an infinite contribution at these frequencies.

The second set of coefficientes, called set of sum coefficients,
is the one that satisfies the system of equations:

p

∑
i=0

a2(i)cx
4(m− i,n+m− i,q+m− i) = 0 (9)

for n,q = 0, . . . , p and m = 1, . . . , p, where p ≥ t and t again being
the number of couplings. As it happened for the frequency coef-
ficients, (9) will hold true if and only if the following equation is
satisfied:

A2(ω)|ω=νc
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for k = 1, ...,t. The above means that the Fourier transform of the
sum coefficients has zeroes precisely at the sum coupled frequen-
cies, therefore its transfer function will yield an infinite contribution
at these frequencies.

Once the systems of equations are solved, the sets of coeffi-
cients are obtained. Using the transfer functions of these sets of
coefficients, H1(ω) = 1/A1(ω) and H2(ω) = 1/A2(ω), the trispec-
trum can be modeled using the expression:

T (ω1,ω2,ω3) = H1(ω1)H1(ω2)H1(ω3)H∗
2 (ω1 +ω2 +ω3) (11)

The four factors of the above trispectrum yield an infinite con-
tribution when the frequencias are equal to the individual frequen-
cies of a cubic phase coupling; i.e.,the above holds when:

(ω1,ω2,ω3) = (νc
k1,ν

c
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c
k3) (12)

for k = 1, . . . ,t. In practice, equations (8) and (10) will not be ex-
act, but if the estimation is accurate enough, then it is expected that

Fourier the transforms of the sets of coefficients evaluated at the cor-
responding frequencies will approach zero. This will make the de-
fined spectrum (11) when evaluated at single coupling frequencies
much higher than in any other point of its domain, which implies
the peaks presence at frequencies corresponding to a cubic phase
coupling, as happened in theoretical trispectrum (6). Although (6)
and (11) are not exactly identical, both show the same peaks distri-
bution, which makes peaks detection based on AR modelling pos-
sible.

Specifically, in order to locate the couplings with AR mod-
elling, first the fourth-order cumulants of the signal x(n), given in
(3), should be estimated. This input signal can be corrupted with
additive gaussian noise of unknown spectrum, which does not af-
fect theoretically the value of the cumulants, since the cummulant
of a sum of signals is the sum of the cumulants and the cumulant of
fourth-order of a gaussian process is zero [3]. With these cumulants,
the systems of equations (7) and (9) are formed and solved, obtain-
ing both sets of AR coefficients, frequency ones and sum ones. Us-
ing both sets of coefficients, the trispectrum given in (11) can be
built. The couplings will be the peaks of this formed trispectrum.
The peaks coordinates match the single frequencies of cubic phase
coupling. However, this procedure requires a three variable function
peaks finding, which can be computationally intensive.

For example, if the sampling frequency is set to unity, then
Fourier transform ranges from 0 Hz to 1 Hz. If 0.01 Hz frequency
precision is required at estimations, a minimum of 100 points are
necessary in the Fourier transforms (8) and (10) to form (11). This
implies a 106 points trispectrum, in which the peaks of a three di-
mensional function should be found. If more precision is needed,
the number of points in the transforms neccesary to compute the
trispectrum makes the calculation time prohibitive. Beside this,
spectral estimation errors, like leakage, can only be overcome by
increasing the total amount of data points for the Fourier transforms.

The above problem makes the trispectrum peaks finding in (11)
a quite hard computing task. However, another scheme can be used
to detect coupled frequencies by using the transforms of both set of
coefficients, (8) and (10). Once the set of coefficients are obtained
solving (7) and (9), the zeros of the Z transform of the coefficients
can be calculated:

A1(z) =
p

∑
i=0

a1(i)z−i and A2(z) =
q

∑
i=0

a2(i)z−i (13)

If p = 3t and q = t, zeros in A1(z) appear at z = e jνc
ks for k =

1, ...,t and s = 1,2,3, i.e., at individual coupled frequencies; while
the zeroes of A2(z) are at z = e jνc

k4 for k = 1, ...,t, i.e., sum coupled
frequencies. With the first set of zeroes, individual frequencies are
obtained, but we have no knowledge of how group these invidual
frequencies in groups of three to form each one of the couplings.
The second set of zeroes is used to do this, since the sume of the
individual frequencies in each couplings should be equal to the sum
frequency. By this scheme, trispectrum peaks finding is avoided and
there is not precision counterbacks, due to the fact that frequencies
are obtained by calculating the roots of a polynomial expression.

A standard approach to improve the harmonic component de-
termination is to overdetermine the problem to solve, which means
increasing the index p and q in (13). Doing this, the calculated zeros
correspondent with the frequencies of the couplings are much closer
to their theoretical values, but new spurious zeros are found which
do not correspond to any coupled frequency. So, when p ≥ 3t, ze-
ros corresponding to individual coupled frequencies are to be iden-
tified between all the set of zeros (that are more than the individual
coupled frequencies due to the overdetermination). This can be ac-
complished identifing the 3t zeros as those closer to the unit circle.
However, as there is no constrains in the location of spurious zeros,
so they can be found all over the complex plane, there is a certain
probability of a spurious zero to be closer to the unit circle than a
correct one, producing a mistaken identification. The chance for
this to happen depends on the number of data points, the method



Figure 1: MSE and probability of correct zeros classification for
Levinson and LS method and for p = 4 and p = 10.

used for solving the system of equations, the order p, the signal
corrupting noise level and the signal itself. The effect of all these
factors will be study in the next section in simulations.

4. RESULTS

In order to study the behaviour of the proposed AR based scheme
in the detection of cubic phase coupling, two different examples are
going to be analysed. In the first one, only a cubic phase coupling
appears, while in the second example, together with one phase cou-
pling, there are four frequencies harmonically related but not phase
coupled.

Example 1. The signal is given by:

x(n) =
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where the frequencies verifies that νc
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4) = 2π(0.07,0.12,0.45,0.64) (rad/s) (15)

In the estimation procedure, 64 independent records with 64
data values each has been used. Additive colored gaussian noise
with a specific SNR is added to the signal. Whis this signals, the
fourth-order cumulants are estimated, computing the cumulants in
each record and then taking the final value for the cumulantes the
mean of all the cumulants in each record. With these cumulants,
the system of equations (7) is built and then is solved using the
Levinson method [2] and the standard Least Square (LS) procedure.
The first method builds a determined Toeplitz system of equations
setting n = q = 0, and then the coefficients are obtained using the
iterative Levinson procedure for Toeplitz systems of equations. The
second method builds an overdetermined system setting q = 0 and
n = 1, . . . , p, then the least-squares procedure is applied to obtain
the frequency coefficients.

Two indexes or parameters are calculated in the simulations to
characterize the behaviour, which are shown in Figure 1. The first

parameter is the probability of correct classification of the zeroes,
shown in the bottom graph. This parameter is computed counting
the times there is not spurious zeros between the 3t selected fre-
quencies in 20 independent realizations, i.e. the times, in 20 real-
izations, that the zeros correspondent with the individual frequen-
cies are closer to the unit circle than any spurious zero are counted,
and with this number the correct classification probability is esti-
mated. In addition, each time the classification is correct, the mean
square error between the exact zero location and the estimated ones
is computed, wich it will be the second parameter, i.e.:

MSE =

√√√√1
3

3

∑
i=1

|ẑi − zi|2 (16)

where ẑi are the estimated zeros and zi the theoretical ones. The
resulting MSE is shown in the upper graph in Figure 1 using the
correct clasifications in the 20 independent realizations.

With the first parameter it is possible study the probability the
method is wrong in the label of a zero as a correct zero, and with
the second it is possible to study how accurate the method places
the correct zeros. The behaviour of both parameters as a function of
the SNR are shown in Figure 1 for the two approaches described in
Section 3, specifically, the solution using Levinson algorithm with a
determinate system of equations and the standard LS method for an
overdeterminate system of equations. This is study for two values
of p, specifically, p = 4 and p = 10.

As it is shown in this figure, the LS method gives a better prob-
ability of correct zero location and a lower MSE than the Levinson
procedure. It can be observed that increasing the p index of the
system of equations (7), i.e. overdetemine the problem, allows the
estimations to be improved, but there is a limit in the improvement
that can be obtained by this method, since the increasing of p also
implies to increase the number of spurious zeros which can be er-
roneously taken as the correct ones, decreasing the probability of
correct classification, and there can be a drop in the probability of
zeros identification. This behaviour is observed in Figure 1, where
the Levinson method shows a poorer performance for p = 10 than
for p = 4 in the probability of correct clasification at high SNR. As
an important conclusion, it can be drawn from the simulations that
the LS method achieves a high probability of correct identification
with a low MSE for SNR up to 5 dB (see Figure 1 for p = 10). Then,
it is proved that it is reliable to estimate the cubic phase frequencies
using AR modelling. It is worthy also to note that the number of
data in the signal x(n) is not big, so application to real situations
even in real time of these approach is possible. Of course, better
result will be found if the number of data is increased, since the
methods are unbias, so they always reach asyntotically the correct
solution.

Example 2. In the following example, the possibility of recog-
nizing a cubic phase coupling from four frequencies harmonically
related but not coupled is studied. The signal is now given by:
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3. Therefore, this signal contains a cubic phase

coupling and other four frequencies which are harmonically related
but not coupled. In the simulation the following frequency values
have been chosen:
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(18)

The signal consisted in 64 independent records with 64 data
values each one. For this signal, it is neccesary for the records to be
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Figure 2: Power spectrum of the AR frequency coefficients obtained
by the LS method with p=10 for ten realizations of a signal with a
cubic phase coupling and other four harmonically related frequen-
cies.

independent, since the signal is not ergodic. A detail explication of
this problem can be found in [1].

After the obtaining of the fourth-order cumulants, the system of
equations (7) is built and then solved by the Levinson’s algorithm
and the LS method, as it was in the first example. In Figures 2 and
3, ten spectrum of the AR coefficients estimated for noiseless sig-
nals, with p setting equal to 7 for both methods, are shown. In this
figure and in the nexts, the vertical continuous line represents the in-
dividual frequency positions, which is where we want to obtain the
spectrum peaks, while the vertical dashed lines show the location of
the remaining frequencies of the signal (17). The theoretical form
of the spectrum of the AR coefficients should be just three peaks
in the frequencies correspondent with the individual frequencies of
the cubic coupling.

Several conclusions can be drawn from these pictures. The re-
sults obtained from the LS method exhibits a lower variance than
those given by Levinson solution. The LS method presents clear
narrow peaks in the individual frequencies, while the peaks of the
Levinson method are less clear and wider. However, the spectrums
of the AR coefficients obtained by the LS method present other
peaks apart from the expected. Those peaks are also narrow and
they appear systematically in the same positions, which correspond
with the sum of the individual copled frequencies and the uncoupled
frequencies. Those extra peaks are due to the spurious zeros that
appear due to the overdetermination of the problem. The fact the
spurious zeros form peaks means that they are close to the correct
solution, and the fact that they appear systematically in the same po-
sition means that this contribution is not possible to be eliminate by
any average. As it can be seen in Figure 2, it is not possible to dis-
criminate from the spectrum of the AR coefficients obtained by LS
method which frequencies are coupled and which not. In fact, if the
number of couplings is unknown, from this figure would indicate
that there are two couplings, what would lead to a wrong analysis
of the signal.

On the other hand, the spurious zeros of the Levison-base solu-
tion produce less peaks, less clear and they do not present the sys-
tematicity in the position that the LS’s presented. Then, it is easier
discriminate in the Levinson method than in the LS the individual
coupled frequencies. This is highligthed if a spectral averaging is
taken, as it is shown in Figure 4. The resulting averaged spectrum
method shows only clear peaks at the individual coupled frequen-
cies, thus allowing the coupled frequencies to be distinguish from
those only harmonically related. Once this discrimination is done,
the LS results can be used to estimate the individual coupled fre-
quencies with better precision. Then a combination of the two AR
method allows us to a correct analysis of the nature of the signal and
an acurate location of the individual coupled signals.

0 0.08 0.26 0.38 1
−50

0

50

frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Figure 3: Power spectrum of the AR frequency coefficients obtained
by the Levinson method with p=10 for ten realizations of a signal
with a cubic phase coupling and other four harmonically related
frequencies.
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Figure 4: Mean of ten power spectrums of the AR frequency coeffi-
cients obtained by the Levinson method with p=10 for a signal with
a cubic phase coupling and other four harmonically related frequen-
cies.

5. CONCLUSIONS

In this communication, the problem of detecting cubic phase cou-
pling using AR modelling is studied. It is proposed a procedure
based on a double AR modelling and a further detection and selec-
tion of coupled frequencies. The proposed method minimizes the
computational burden associated to the maximum-detection algo-
rithms in the trispectral domain estimating the frequencies by locat-
ing the zeroes of a low-order polynomial. Simulation results show
the proposed method allows adequate estimations and the viability
of the procedure to distinguish between cubic phase coupling and
four frequencies harmonically related but not coupled.
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