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ABSTRACT 
The main hypothesis tested in this study is that cognitive 
activity causes a change in the complexity of functional 
near-infrared spectroscopy (fNIRS) signals. We calculated 
neural complexity (CN) of fNIRS signals obtained during 
mental arithmetic task and monitored the time course of 
change in neural complexity. Considerable increases in neu-
ral complexity were observed during active periods of the 
experiment. This result indicates that statistical measures 
may play important roles in the efforts to detect brain activa-
tion by optical methods. 

1. INTRODUCTION 

Complexity of a physical system can be defined in several 
ways. In fact, there is no quantitative measure of complexity 
to be applied universally. So far, there are two main ap-
proaches for calculating complexity: i) Entropy measures 
derived in the framework of information theory [1] and ii) 
entropy measures derived in the framework of non-linear 
analysis [2]. 

There is much evidence that, in the brain, functional spe-
cialization for different attributes coexists with functional 
integration. Tononi et al. [3] introduced the concept of neu-
ral complexity that reflects the interplay between functional 
segregation and integration within a neural system. Func-
tional segregation and integration are characterized in terms 
of deviations from statistical independence among the com-
ponents of a neural system, measured using the concepts of 
statistical entropy and mutual information. Quoting from 
Tononi et al. [3], “…(the neural complexity) CN is low for 
systems whose components are characterized either by total 
independence or total dependence and high for systems 
whose components show simultaneous evidence of inde-
pendence in small subsets and increasing dependence in 
subsets of increasing size.” In this way, CN emphasizes the 
idea that complex systems are neither completely regular nor 
completely random. 

Neural complexity model was applied in a number of 
studies and in fact, some contradictory results were obtained. 
A basic prediction of the model is that in a region of interest 
in the brain such data should show a considerably larger CN 
compared to a control baseline.  This was first demonstrated 
by Friston et al. [4] using fMRI. Another prediction was that 
CN would be reduced in neurological disorders where con-
sciousness is reduced. However, investigating this prediction 

using EEG data from generalized seizures and postanoxic 
encephalopathy, van Putten et al. [5] found that CN of the 
patients was higher than the controls. Branston et al. [6] 
measured neural complexity of EEG signals during a visual 
oddball task and concluded that neural complexity correlates 
with subject’s cognitive state in a way that depends on the 
stimulus context. Van Cappallen van Walsum et al. [7] ap-
plied neural complexity measure to magneto-
encephalography (MEG) data in Alzheimer’s disease and 
found that neural complexity did not decrease in patients 
with Alzheimer’s disease, but that there were differences in 
the frequency bands between controls and diseased subjects 
When evaluated together, the findings of these work suggest 
that although neural complexity is correlated with cognitive 
activity of the brain, it is not correct to suppose direct rela-
tions between them. 

Near-infrared light is defined as light with a wavelength 
that is generally from 700 to 1300 nm. Near-infrared light, 
especially between 700 and 900 nm can easily pass through 
biological tissue because light in this region is less scattered 
and it is absorbed by only a few biological chromophores 
such as hemoglobin, myoglobin and cytochrome oxidase. 
Spectra of hemoglobin vary with its oxygenation state. By 
measuring the transmitted light through the tissue one can 
obtain information about the oxygenation-deoxygenation 
state of hemoglobin. Although it was shown that NIRS was 
capable of detecting changes of the above mentioned pa-
rameters during morphological changes, employability of 
NIRS to detect cognitive activity is an open question, yet.  
The main problem is the incomplete knowledge of which 
brain region is sampled by near-infrared light. However, 
fNIRS has very important attributes, such as its being com-
pletely non-invasive and its easily handling that makes it a 
promising tool for neuroimaging studies. Furthermore we 
know, especially from EEG analyses, that observing the 
variations of the data characteristics may give valuable in-
sight about the brain activity [2,8].  

The methods for extracting cognitive activity from func-
tional neuroimaging data, generally, rely upon some models 
or assumptions concerning the stimulus and its blood hemo-
dynamic response (BHR). Following the two above lines of 
study, namely, this study tries to relate the changes in the 
complexity of the fNIRS signal processing on the one hand, 
and complexity measures as an indicator of cognitive activ-
ity, we try to couple these two disciplines. In other words, 
this study aims to make a contribution for the clarification of 



the potential of fNIRS to measure brain activation via the 
intermediary of the complexity of the near-infrared signals 
probing the brain. 

2. COMPLEXITY METHODS AND THEIR 
COMPUTATION 

2.1 Calculation of complexity 

Suppose a system { }iX X= consists of n elementary com-

ponents iX , i = 1,2,…,n. Consider subsets kX  composed 

of k out of n components of X  and let k
jX  be the jth such 

subset. The integration  of subset ( k
jI X ) k

jX  is defined [5] 
by, 
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We can interpret (1) as the difference between the sum of 
subsystem entropies considered independently and the en-
tropy of the collection of these subsystems. Therefore 

expresses the degree of independence between the k 

components of 

( k
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k
jX . 

Note that there are N!/k!(N-k)! combinations of the k 

components. If ( )k
jI X denotes the average integration 

over all subsets of size k, then ( ) (n
jI X I X= )  and 

1( ) 0jI X = . Furthermore,  if the components 

are statistically independent and  becomes maximal 
for complete dependency. 
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The neural complexity CN(X) of the entire system X is de-
fined by, 
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so that, CN(X) which is a non-negative scalar, is relatively 
high when the integration of the system is high and, at the 
same time, the average integration for subsets is lower than 
would be expected from a linear increase over increasing 
subset size. In the original derivation of CN [3], the probabil-
ity density function of X is assumed to be a multivariate 
Gaussian. Then, the system can be completely characterized 

by its covariance matrix and it was shown that [3], 
can be derived from the correlation matrix of ( k

jI X ) k
jX : 

( )( ) ln ( ) / 2k
jI X CORR X= − k

j   (3) 

In our case, the components Xi are the signals from 
fNIRS electrodes.  Our inspection of these signals showed 
that probability distributions do not deviate much from a 
Gaussian distribution and the above equations are valid. Note 
that, assumption of a multivariate Gaussian distribution dis-
counts any nonlinear dependencies.  

 
2.2 Subjects, Protocols and fNIRS acquisition 

Data were obtained from 12 secondary school students (6 
male, 6 female; ages 15-16) during a mental arithmetic (MA) 
task. Subjects were asked to subtract serially a 2-digit num-
ber from a 4-digit number as quickly as possible (self-paced) 
for 60 seconds. The durations in the experiment go like this: 
1st rest: 60s, 1st MA task: 60s, 2nd rest: 90s, 2nd MA task 60s, 
3rd rest 90s. 

MA is a block-type paradigm where individual responses 
overlap. This design enables us to monitor the time course of 
neural complexity. 

Our fNIRS data were collected by NIROXCOPE 201, a 
continuous wave light emitting system consisting of 4 
sources and 16 detectors, developed at Biophotonics Labora-
tory. The LED sources and detection optodes were attached 
to the forehead of  the subjects by insulating rubber bands. 
The sampling rate was 1.7 Hz [11,12]. Figure 1 shows a 
sample data set collected by the 16 detectors over the pre-
frontal cortex during MA task. 

fNIRS data consisted of intensity measurements at three 
different wavelengths (730, 805 and 850 nm). Relative oxy-
genated (HbO2) and deoxygenated (HbR) hemoglobin con-
centrations were calculated by the Modified Beer-Lambert 
Law[13]. 

 
Figure 1. A sample set of HbO2 time series acquired by the 

16 detectors over the prefrontal cortex. 

3. RESULTS 

The neural complexity of the signals were calculated as ex-
plained above. Figure 2 presents the typical curves of inte-
gration and complexity.  



 
 
Figure 2. Neural complexity is the sum of the differences between 
the linear increase of integration and the actual average integration 

with increasing subset size. 
  
 The straight line in Figure 2 shows the theoretical in-
crease of integration with increasing subset size. The line 
below is the actual average integration curve as subset size 
increases. The sum of differences between them (dashed 
area) gives the neural complexity. Since we have 16 detectors 
subset size goes from 1 to 16. 

In event-related paradigms, stimulus is localized to a 
short time period and it is not easy to detect statistical varia-
tions in the signal. Block designs enable us to monitor the 
variations in the characteristics of the signal. We calculated 
neural complexity values of HbO2 and HbR during rest and 
question & answer periods separately. Figures 3a and 3b 
show the whisker plots of the complexity values of HbO2 
and HbR for the whole data set (12 subjects). 

P value for HbO2 is 4×10-4, whereas HbR has a P value 
of 0.09, which means that although the difference between 
the means of HbO2 data is significant, those of HbR are in-
significant. 

 

 
 

Figure 3a. Mean and extent of the HbO2 time series for 12 
subjects.  

 
Figure 3b. Mean and extent of the HbR time series for 12 

subjects.  
 

4. DISCUSSION 

Regional brain activation is accompanied by increases in 
regional cerebral blood flow (rCBF) exceeding the increase 
in regional cerebral oxygen metabolic rate (rCMRO2) which 
results in a decrease in HbR in venous blood. Thus, the ex-
pectation from NIRS measurements is to observe an in-
crease in HbO2 and a reciprocal decrease in HbR in acti-
vated areas. However, this is not always the case. HbR 
sometimes may not change although total blood flow 
changes or both HbO2 and HbR may change in the same 
direction. Hoshi [9] states that directions of changes in 
HbO2 are always the same as those of rCBF, whereas the 
direction of changes in HbR is determined by changes in 
venous blood oxygenation and volume. Thus, HbO2 is the 
most sensitive indicator of changes in rCBF in NIRS meas-
urement. 

Previous studies have revealed that even under resting 
conditions, the hemoglobin oxygenation state fluctuates [14]. 
These fluctuations may originate from physiological activi-
ties such as arterial pulse oscillations and respirations or from 
small artery oscillations [14,15]. So, a steady signal should 
not be expected from the measurements obtained during rest.  
In fact, the second and third rest periods cannot be accepted 
to be totally free from cognitive activity. The high complex-
ity values during these periods may be the result of rethink-
ing the questions. Getting the smallest value of complexity 
for the rest period at the beginning is meaningful, because 
this is the only time during which subject can be considered 
to be in complete rest. We have several other comments in 
the sequel. 

First, in the context of the above physiological consid-
erations, the difference between the neural complexity of the 
signal during resting and active periods is significant (p=?). It 
states that fNIRS can capture the changes in brain metabo-
lism caused by cognitive activity. If we had used complexity 
measures which reach to a high value for random signals, 
complexity of the resting period would probably be larger 
than active periods. However, we would be unable to decide 



whether this ‘complexity’ arises from noise or from activities 
of neurons, as we had stated that there were fluctuations in 
HbO2 and HbR signals even in the rest condition. Instead, by 
employing a complexity measure which uses both integration 
and segregation it becomes possible to identify random fluc-
tuations. There is an ongoing activity at rest, however sub-
components (neuronal groups) behave independently from 
each other and thus average integration follows a closer path 
to linear integration. 

Second, we used a well-known block design experimen-
tal paradigm to observe the variations of neural complexity 
with increasing cognitive activity. From Figure 3, it may be 
observed that complexity measure is not a “perfect” but “in-
formative” tool to detect brain activity. In all of the subjects 
complexity values of HbO2 show an increase after the ques-
tion & answer period starts. HbR, also, shows the same trend 
but, as expected, not as accurate as HbO2. Let us recall that 
HbR is affected more from variability of the underlying 
physiological mechanisms. 

HbO2 is less successful in showing the increase in the 
activity during the second question & answer period. This 
may be interpreted as, with some precautions, habituation to 
the experiment, a heightened status of homeostasis due the 
existence of more oxygen hence less increase in HbO2, a 
new equilibrium point between the demand of oxygen of the 
neurons and the increase in cerebral blood flow. 

An interesting point would be to search for a relationship 
between the success of the subject in answering the questions 
and his/her neural complexity waveform. However, since this 
was a first study, we decided to concentrate on the method.  

One last comment should be made about the size of the 
data set. Since the number of subjects was small, the findings 
of this study can not be considered as conclusive, but rather, 
promising for further studies. 

5. CONCLUSION 

We have shown that functional near infrared spectroscopy 
signals captured from the pre-frontal region of the brain carry 
information about the cognitive processes. This evidence was 
found by observing the evolutionary state of the complexity 
during a block-type experiment. 

These observations constitute an additional proof of the 
utility of the fNIRS signals. Recall that in [12], canonical 
bands of these signals were observed and a method for the 
extraction of the BHR waveforms were developed. 
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