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ABSTRACT

We describe a novel adaptive despeckling filter for Synthetic Aper-
ture Radar (SAR) images. In the proposed approach, the Radar
Cross Section (RCS) is estimated using a maximum a posteriori
(MAP) criterion. We first employ a logarithmic transformation to
change the multiplicative speckle into additive noise. We model
the RCS using the heavy-tailed Rayleigh distribution, which was
recently proposed as an accurate model for amplitude SAR images.
We estimate model parameters from noisy observations by applying
the “method-of-log-cumulants”, which relies on the Mellin trans-
form. Finally, we compare our proposed algorithm with the classi-
cal Lee filtering technique applied on an aerial image and we quan-
tify the performance improvement.

1. INTRODUCTION

SAR images are inherently affected by a signal dependent noise
known as speckle, which is due to the radar wave coherence [1].
Speckle is not truly a noise in the typical engineering sense, since
its texture often carries useful information about the scene being
imaged. However, its presence is generally considered undesirable
since it damages radiometric resolution and it affects the tasks of
human interpretation and scene analysis. Thus, it appears sensible
to reduce speckle in SAR images, provided that the structural fea-
tures and textural information are not lost.

Many adaptive filters for SAR image denoising have been pro-
posed in the past. The simplest approaches to speckle reduction are
based on temporal averaging [1], median filtering, and homomor-
phic Wiener filtering [2]. The Lee MMSE filter was designed as
a linear filter based on the minimum mean-square error (MMSE)
criterion, optimal when both the scene and the detected intensities
are Gaussian distributed and based on a linear approximation made
for the multiplicative noise model [3]. Finally, the Gamma MAP
filter was based on a Bayesian analysis of the image statistics where
both radar cross section (RCS) and speckle noise follow a Gamma
distribution [4].

In this paper we propose the use of an alternative RCS model
for designing a speckle removal filter. Thus, we employ the heavy-
tailed Rayleigh distribution [5] that was shown to be well justified
by the physics of the radar wave scattering. Specifically, the model
was developed based on the observation that the real and imaginary
parts of the received complex signal can be accurately modelled us-
ing the symmetric alpha-stable family of distribution. Under the
assumption of a multiplicative speckle noise model, we first em-
ploy a logarithmic transformation in order to change the noise into
an additive one. Then, the general MAP solution for the resulting
model is derived and the model parameter estimation is presented.
The proposed estimation method is based on the second-kind sta-
tistic theory employing Mellin’s transform [6] as recently proposed
by Nicolas and co-workers [7].

The paper is organized as follows. In Section 2 we discuss
the statistical properties of SAR images, as well as those of log-
transformed images. In Section 3, we present the design of our
MAP estimator based on the heavy-tailed Rayleigh signal model,
which includes a novel parameter estimation method based on the

Mellin transform. In Section 4, we evaluate the performance of our
proposed filter and we compare it with existing speckle removal
methods. Finally, in Section 5 we conclude the paper with a short
summary.

2. STATISTICAL MODELING OF SAR IMAGES

Parametric Bayesian processing presupposes proper modeling for
the prior probability density function (pdf) of both the radar cross
section and speckle noise. In this section we briefly review the sta-
tistical properties of speckle and we describe the model used for the
RCS.

2.1 Statistics of log-transformed speckle

The statistical properties of speckle noise were studied by Good-
man [1]. He has shown that, if the number of scatterers per reso-
lution cell is large, a fully developed speckle pattern can be mod-
eled as the magnitude of a complex Gaussian field with i.i.d. real
and imaginary components. A general model for speckle noise pro-
posed by Jain [2] is constantly employed when one is concerned
with the implementation of a homomorphic filter. Specifically, if
we denote by y(u,v) a noisy observation (i.e., the recorded SAR
image envelope) of the two-dimensional function x(u,v) (i.e., the
noise-free SAR image that has to be recovered) and by (u,v)the
corrupting multiplicative speckle noise, one can write:

yu,v) = x(u,v) - (u,v) (1)

To transform the multiplicative noise model into an additive one,
we apply the logarithmic function on both sides of (1):

Y(u,v) =X(u,v) +N(u,v), ()

where Y (), X(-), and N(-) are the logarithms of y(-), x(:), and (-),
respectively. For a SAR image representing an average of L looks
in amplitude format, the speckle noise random variable in (1) is
often assumed to follow a Nakagami distribution with unit mean
and variance 1/L. This assumption is motivated by the fact that the
corresponding density for the case of an image in intensity format
is the widely accepted Gamma distribution [4]. The Nakagami pdf
can be written as
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For reasons that will become obvious within the next sections, we
also provide here the first and second orders log-cumulants of a
Nakagami distribution

ka) =7 (LL) )

where  is the Digamma function and  (r,L) is the Polygamma
function, i.e. the r-th derivative of the Digamma function. Having



in mind that p( )d = p(N)dN, one can readily obtain the pdf of
the random variable N = log
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2.2 The generalized Rayleigh model

pa(N) = ®)

The SAR image formation theory has been long time dominated by
the assumption of Gaussianity for the real and imaginary parts of the
received complex signals. Based on this assumption, the detected
amplitude SAR images can be modeled by a Rayleigh distribution.
However, as we will show in this section, invoking a generalized
version of the central limit theorem, the assumption of Gaussianity
can be replaced by an assumption of “alpha-stability” resulting in
a more powerful model for the detected amplitude pdf. In the fol-
lowing we provide a brief, necessary overview of the alpha-stable
statistical model on which the generalized Rayleigh pdf is actually
based.

2.2.1 Symmetric Alpha-Stable Distributions

The § S distribution lacks a compact analytical expression for its
probability density function (pdf). Consequently, it is most conve-
niently represented by its characteristic function [8]

()=expG =1 1) (©6)

where is the characteristic exponent, taking values 0 < <2,
(— < < )isthe location parameter, and (> 0) is the dis-
persion of the distribution. For values of  in the interval (1,2], the
location parameter  corresponds to the mean of the S S distribu-
tion, while for 0 < <1, corresponds to its median. The disper-
sion parameter ~determines the spread of the distribution around its
location parameter , similar to the variance of the Gaussian distri-
bution.

The characteristic exponent  is the most important parameter
of the §' S distribution and it determines the shape of the distribu-
tion. The smaller the characteristic exponent is, the heavier the
tails of the S S density. This implies that random variables follow-
ing S S distributions with small characteristic exponents are highly
impulsive. One consequence of heavy tails is that only moments
of order less than  exist for the non-Gaussian alpha-stable family
members. As a result, stable laws have infinite variance. Gaussian
processes are stable processes with = 2 while Cauchy processes
result when =1.

2.2.2 A Heavy-Tuiled Rayleigh model

Kuruoglu and Zerubia [5] assumed that the real and imaginary parts
of the received SAR signal are jointly S S. Consequently, they de-
rived the following integral equation for the amplitude pdf of SAR
images, which they called the heavy-tailed Rayleigh distribution:

p(x):x./o uexp(— u )Jo(ux)du 7

where Jj is the zeroth order Bessel function of the first kind.
It is important to note at this point, that by considering the spe-
cial case = 2, we obtain

2

p(x) = 3-exp(—3-) ®)

which is basically the classical Rayleigh distribution as expected
since for =2theS S distribution reduces to Gaussian. Also, by
taking =1 in (7), one obtain the following pdf, which we will
refer to as the Cauchy-Rayleigh model
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Figure 1: Generalized Rayleigh probability density functions for
different values of the characteristic exponent . The dispersion
parameter is kept constant at = 1.

In Fig. 1 we show the tail behavior of several heavy-tailed Rayleigh
densities including the particular cases corresponding to the Cauchy
and the Gaussian distributions. In our further developments we will
employ a homomorphic transformation in order to transform the
multiplicative speckle noise into an additive one. Consequently, let
us also provide here the logarithmic domain pdf corresponding to
the heavy-tailed Rayleigh

pA(X):eZX/O uexp(— u )Jo(ue®)du (10)

where X = Inx.

3. ADAPTIVE FILTERING OF SPECKLE NOISE

After applying a logarithmic transformation to the original data we
get an image represented as the sum of the transformations of the
signal and of the noise:

Y=X+N (11)

The MAP estimator of X given the noisy observation Y is:

X(¥)= argm{\gxPX‘y(X|Y) (12)

Bayes’ theorem gives the a posteriori PDF of X based on the mea-
sured data:
Pyx (Y |X) Py (X)

Py (X[Y) = A ) ;

(13)
where Py(X) is the prior PDF of the signal component of the
measurements and Py|y (Y |X) is the likelihood function. Substi-

tuting (13) in (12), we get:
X(¥)= argm)?XPY‘X(Y |X) Py (X) = argm)a(leN(YfX)PX(X)
= argm)?xPN(N)PX(X) (14)

In the above equation we use a heavy-tailed Rayleigh model for the
signal component, while we use a Nakagami model for the noise
component. Naturally, in order for the processor in Eq. (14) to be
of any practical use, one should be able to estimate the parameters

x and x of the signal from the observed data. In the next sub-
section we derive parameter estimation methods for the generalized
Rayleigh pdf based on second-kind cumulants.



3.1 Parameter estimation using Mellin transform

Following the arguments in [6], Nicolas has recently proposed the
use of Mellin transform as a powerful tool for deriving parameter
estimation methods based on log-cumulants for the case of multi-
plicative noise contamination as is the case with SAR images [7]. In
the following, we briefly review the Mellin transform and its main
properties that we used in our derivations.

3.1.1 Mellin transform

Let f be a function defined over
by

T. The integral transform defined

w1 f(u)du (15)

is called the Mellin transform of f. The inverse transform is given
by

=Ll = o [ e was e
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The transform  (s) exists if the integral [;° [f(x)|x*~!dx is
bounded for some & > 0, in which case the inverse f(u) exists with
¢ > k. The functions (s) and f(u) are called a Mellin transform
pair, and either can be computed if the other is known.

By analogy with the way in which common statistics are de-
ducted based on Fourier Transform, the following second-kind sta-
tistic functions can be defined, based on Mellin Transform [7]

e Second-kind first characteristic function

+ 1
(6)= [ pw (17)
Jo
e Second-kind second characteristic function
(s) =log( (s)) (18)
e " order second-kind moments
d" (s +
=T = [ ogrpar (9)

o " order second-kind cumulants

z d (s)
k= - ’3:1 (20)

The first two second-kind cumulants can be estimated empiri-
cally from N samples y; as follows
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= logti)
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e Finally, for two functions f and g, Mellin’s convolution is de-
fined over the interval [0, ] as

(Fom = [ rweHE= [7 1w e

X

3.1.2 Log-moment estimation of the generalized Rayleigh model

By plugging the expression of the heavy-tailed Rayleigh pdf given
by (7) into (17) and after some straightforward manipulations, de-
tails of which can be found in [5], one gets

s o (stly = (l=s
(=2 (2()1;3) =) (23)
2

which is the second-kind first characteristic function of the heavy-
tailed Rayleigh density. Kuruoglu and Zerubia [5] used this ex-
pression for two different values of s and subsequently solved the
resulting system in order to get estimates of the parameters and .
However, here we are interested in deriving estimates of the model
parameters in the case of multiplicative noise contamination. Con-
sequently, we settled by plugging the above expression in (18) and
subsequently in (20), thus obtaining the following results for the
second-kind cumulants of the model

1

1—
kqy=— (1)—— +1log(2 )

by =~ 24)

Using the above system of two equations one can readily solve for
the parameters and of the heavy-tailed Rayleigh distribution.
Remember however that our measurement is a mixture of heavy-
tailed Rayleigh signal and Nakagami distributed speckle noise. Un-
der the multiplicative speckle noise model (1), if we denote by
py(v), px(x),andp () the pdfs of y, x, respectively, it can be
shown that the pdf of y is given in fact by the Mellin convolution
between the pdfs of x and . Consequently, the second-kind cu-
mulant of any order of y is given by the sum of the second-kind
cumulants of the same order of x and

ke = ke TF (25)

Using expressions (4) and (24) in the above equation together
with the empirical log-cumulants in (21) we obtain the following
estimates for the parameters of the heavy-tailed Rayleigh model (7)
mixed with Nakagami distributed speckle noise

] (26)

4. EXPERIMENTAL RESULTS

In this section, we present simulation results obtained by process-
ing a test image using our proposed MAP speckle filter based on
the heavy-tailed Rayleigh prior. Specifically, we degraded an origi-
nal “speckleless” image with synthetic speckle in amplitude format.
For this purpose, an aerial image was chosen due to its identical
content with real SAR images. This image was obtained by crop-
ping the “westaerialconcorde” image that can be found in Matlab’s
Image Processing Toolbox. In our experiments, we considered two
different levels of simulated speckle noise corresponding to L =3
and 12 (cf. eq. 3). We compared the results of our approach with
those obtained using other classical speckle filters including the me-
dian, the homomorphic Wiener, and the Lee filter.

In order to assess the quality of our proposed filter we computed
two different measures based on the original and the denoised data.
A common way to evaluate the noise suppression in case of mul-
tiplicative contamination is to calculate the signal-to-mean squared
error (S/MSE) ratio, defined as

K K
S/MSE =10log,o( 82/ (S;—5)?) 27)
1

i=1

i=
where S is the original image, S is the denoised image, and K is the
image size. This measure corresponds to the classical SNR in the
case of additive noise.

In addition to the above quantitative performance measure, we
also consider a qualitative measure for edge preservation (e.g. [9])
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Figure 2: Results of various speckle suppressing methods. (a) Orig-
inal image. (b) Simulated speckle image (L = 3, amplitude format).
(c) Lee filter. (d) Proposed MAP filter.

where Sand S are the high-pass filtered versions of § and S re-
spectively, obtained with a 3 x 3-pixel standard approximation of
the Laplacian operator, and

K
(S1,8) = S1,-8, (29)

i=1

The correlation measure, should be close to unity for an optimal
effect of edge preservation. The obtained values of S/MSE, and
for all methods applied to our test image are given in Table 1. From
the table it can be seen that, in most situations, our proposed filter
exhibits the best performance according to both metrics. Figure 2
shows a representative result from the processing of the aerial test
image. The image in Figure 2(b) was obtained by degrading the
original test image (2(a)) with Nakagami distributed speckle noise
(cf. eq. 3) with L = 3 looks. From the figure it can be seen that all
the tested filters achieved a good speckle surpressing performance.
However, clearly our homomorphic MAP filter based on the heavy-
tailed Rayleigh signal prior did the best job in preserving the struc-
tural features that can be observed in the original image.

Table 1: Image enhancement measures obtained by four denoising
methods applied on the “aerial” image. Two levels of noise are
considered corresponding to ENL=3 and 12. The S/MSE of each
despeckled image is given in dB.

ENL =3 ENL =12
Method S/MSE | S/MSE |
Median 15.52 | 0.3309 15.88 | 0.3677
Wiener 1527 | 0.3812 15.60 | 0.4150
Lee 1535 | 0.3540 17.28 | 0.6186
proposed 16.83 0.3541 18.68 | 0.6471

5. SUMMARY

We presented a new homomorphic statistical filter for speckle noise
removal in SAR images, which is based on the recently introduced
heavy-tailed Rayleigh model for the amplitude of the RCS. Under
the assumption of a multiplicative speckle noise model, we first em-
ployed a logarithmic transformation in order to change the noise
into an additive one and to differentiate its characteristics from the
signal characteristics. Then, a maximum a posteriori processor
was implemented numerically and the corresponding nonlinearities
were applied to the observed data. A novel parameter estimation
method was developed for the case of generalized Rayleigh sig-
nal mixed with Nakagami distributed speckle noise. The estimation
method is based on the recently proposed method-of-log-cumulants
employing Mellin’s transform. Our simulations results showed that
the homomorphic MAP filter based on the heavy-tailed Rayleigh
model is among the best for speckle removal.
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