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ABSTRACT

In the past few years several systems for tridimensional
face reconstruction based on the analysis of 2D images have
been proposed. The main goal of these systems is to pro-
vide fast and reliable 3D information for face recognition
systems. Nonetheless, affordable image-based systems that
are able to guarantee a high level of details and fast process-
ing using commercial devices are far from being available.
In this paper we propose a novel approach for a fast gener-
ation of detailed depth-maps of human faces based on a set
of three calibrated cameras. The proposed algorithm is based
on an fast implementation of the graph-cuts [1, 3] approach,
which guarantees high-quality results in just a few seconds
of processing time.

1. INTRODUCTION

Reconstructing a detailed depth-map from a set of cameras
is a classical and long-debated problem of computer vision.
In the past few years this problem has raised a great deal of
interest due to the increasing number of applications, both
in vision and in graphics, where this problem has become
of crucial importance. Classical depth-map estimation algo-
rithms based on multi-camera acquisition are, in fact, time
consuming, particularly when the accuracy is an issue. In this
paper we show how a global energy approach derived from
graph-cuts algorithms can be used to speed up the image-
based modeling process while guaranteeing an accurate re-
construction. The final result is a detailed 3D texture-mapped
mesh of the acquired face, which can be used for recognition
purposes or for the alignment and the normalization of facial
features.

Although the algorithm described in this paper was de-
veloped specifically for 3D face recognition purposes, its
range of application is much wider than that, as it can be
used whenever a fast and detailed depth-map from multiple
calibrated images is needed.

2. DEPTH MAP RECONSTRUCTION

In this section we show how to accurately reconstruct the
depth-map of a face from a set of images. In order to do so,
we started from the well-known graph cuts approach [1, 3,
4, 9], and we adapted it and optimized it to the problem of
depth-map reconstruction.

In what follows we provide a brief description of the en-
ergy minimization approach that the graph cuts method is
based on. After then we will show how to formulate the
problem of depth map reconstruction in term of energy min-
imization.

2.1 Energy minimization approach

It is well known that the problems of depth map reconstruc-
tion and image restoration can be elegantly approached in
terms of energy minimization [3, 4], with extremely appeal-
ing results. In the past few years powerful energy minimiza-
tion algorithms have been developed based on graph cuts
[3, 5, 24]. These methods are fast enough to be of practical
interest, but unlike other methods such as simulated anneal-
ing, the solutions based on graph cuts cannot be applied to
arbitrary functions. In this paper we will use some recent re-
sults [4] on graph construction, in order to extend the method
to quite a general class of energy functions.

The energy minimization formalism exhibits several ad-
vantages. It allows a detailed description of the problem to
be solved. Moreover, energy minimization naturally enables
the use of soft constraints, such as spatial coherence and a
global smoothness term. This allows us to avoid ambiguities
with spatially smooth answers that preserves discontinuities.

2.2 Problem formulation

Let us assume that n calibrated images of the same scene are
taken from different viewpoints (or at different times). Let us
choose a reference camera and let P be the set of pixels of
the corresponding image. A pixel p∈P corresponds to a ray
in 3D-space. Consider the first intersection of this ray with
an object in the scene. Our goal is to find the depth of this
point for all the pixel of the preferred image. We thus want
to find a labeling f : P → L where L is a discrete set of
labels corresponding to increasing depths from the preferred
camera. Equivalently, we want to obtain the depth map of the
pixels in the preferred image.

A pair 〈p, l〉 where p ∈P , l ∈L corresponds to some
point in 3D-space. We will refer to such points as 3D-points.

We define our energy function as consisting of two terms:

E( f ) = Edata( f )+Esmooth( f )

In their work, Kolmogorov and Zabih [1] formulate the
problem of scene reconstruction in a slightly different fash-
ion, which allowed them to obtain a depth map for every
image in the input set by an energy minimization approach.
This leads to a computational expensive algorithm whose re-
sult is a unorganized clouds of point representing the surface
of the visible part of the scene to reconstruct. Moveover,
in order to achieve an effective reconstruction from the in-
put set, a further energy term (called visibility term) must
be accounted for, in order to avoid mutual intersections of
re-projected rays coming from different cameras (see [1] for
more details). Whereas with our definition we can treat a



very large number of camera configurations without these
further limitations.

Notice also that in our approach it is no long necessary
to define the visibility term like in [1]. In fact, assuming that
the set of label corresponds to the increasing depths from the
preferred camera, there cannot exists occluding pixels in the
same image. As a consequence, a visibility term is no longer
necessary. The other terms are also quite different. Our data
term, for example, is defined as follow:

Edata( f ) = ∑
p∈P

D(p)

where D(p) is a non-positive value which results from the
differences in intensity between corresponding pixels. D(p)
is computed for every pixel of the preferred image (we indi-
cate this image with the index j) by this steps:
1. from p, we get the corresponding 3D-point by back-

projecting it from the reference camera center of projec-
tion with the selected depth and then we project this 3D-
point on each other calibrated image obtaining a set of
n−1 corresponding pixels {q1,q2, . . . ,qi, . . . ,qn|i 6= j};

2. on every non-reference image we compute the SSD (Sum
of Square Difference) using a square window centered on
qi and the one centered on p, obtaining the set of values
{d1,d2, . . . ,di, . . . ,dn|i 6= j};

3. finally, we have

D(p) = min(0,
n

∑
i = 1
i 6= j

di−K) (1)

where K is a positive constant that is large enough to cap-
ture significant variations of the SSD function (a typical
value is K = 30).
The smoothness term is quite similar to the one used in

[1] and its goal is to encourage neighboring pixels in the pre-
ferred image to have similar depths. The smoothness term is
defined as follow:

Esmooth( f ) = ∑
{p,q}∈N

V{p,q}( f (p), f (q)) (2)

This term involves the notion of neighborhood: we as-
sume that there is a neighborhood system on pixel

N ⊂ {{p,q} | p,q ∈P}
This can be the usual 4-neighborhood system: pixels p =

(px, py) and q = (qx,qy) are neighbors if they are in the same
image and |px−qx|+ |py−qy|= 1.

In [1], the function V{p,q} takes on the following form:

V{p,q}(lp, lq) =
{

U{p,q} if lp 6= lq
0 otherwise (3)

where the U{p,q} is the following non-decreasing func-
tion:

U{p,q} =
{

3λ if ∆I(p,q) < 5
λ otherwise (4)

In order to obtain a smooth reconstruction that preserves
discontinuities, we chose to follow a particular strategy in

the use of the smoothness term. In fact, it is well-known
that graph cuts techniques often yields flat and blocky re-
sults. This may not be important for disparity maps, but it is
crucial for shape reconstruction. In order to avoid this prob-
lem, we make a first cycle of the reconstruction algorithm
with a limited set of labels, in order to rapidly reach a value
of the energy that is close to the local minimum that could be
reached at convergence with the original algorithm. This cor-
responds to a good approximation of the position of the 3D-
points, which can be improved with a second cycle at twice
the resolution, where we change the function V{p,q} defined
in (3) with this new function:

V̂{p,q}(lp, lq) =
{

U{p,q} if |lp− lq|> z threshold
0 otherwise (5)

In fact, this function relaxes the penalty mechanism of the
smoothness term, giving a 0 penalty not only to the neighbor-
ing pixels that lie at the same depth but also to the ones that
stay sufficiently close to each other. The idea is supported by
the fact that after the first cycle of the algorithm, only some
of the pixels are approximatively well positioned in 3D-space
by the consistency measure given by the data term, while the
other pixels’ locations are only decided by the smoothness
term. This term, in fact, forces them to lie at the same level
of the neighboring pixel, resulting in flat blocks. Thus, re-
laxing the constraint imposed by the first smoothness term,
neighboring pixels have greater chance to occupy adjacent
depths correctly.

2.3 Graph cuts Algorithm

Thanks to our energy redefinition the results obtained from
the standard graph cuts algorithm (as defined in [1]) are much
more accurate. As shown in the next paragraph, further
depth map optimization guarantees high fidelity in the recon-
structed data.

2.4 Depth map optimization

Even though the graph cuts algorithm is able to reconstruct
an accurate depth map, it works only with a limited set of
depths and, therefore, it introduces a considerable quantiza-
tion error in the positioning of each one of the 3D points. in
order to overcome this problem, it is necessary to adopt an
optimization step which produces more regular depth maps.
The output of this process is a new depth map, where the dis-
continuities are preserved while the other parts turn out to be
smoother.

In order to do so, we consider the depth map as a func-
tions of two variables defined on the preferred image and we
apply a series of 2D filters to it. In particular, we start with
a median filter to eliminate possible outliers and then we ap-
ply a dithering technique: some white noise is added to the
depth function and, then, a low pass filter is used to reduce
depth quantization error and obtain a smoother map. In order
to preserve discontinuities, the 2D low-pass filter keeps the
information needed from the neighbors of a pixel only if the
depth distance is below a certain threshold. The size of the
filter windows and this threshold are empirically chosen on
the basis of the current reconstruction.



2.5 Mesh triangulation
From the previous section we learnt how to compute a depth
map from a set of images of the interested object. We also
said that every map can be seen as a 2D function defined on
the preferred image. Starting from this point, we can eas-
ily implement a triangulation algorithm that produce a mesh
from a depth map on the basis of the neighboring pixels.
Consider four neighboring points and the six possible con-
nection shown in figure 1:

Figure 1: Six possible configurations for the creation of tri-
angles from four neighboring points.

when two neighboring pixels have depths differing by
more than some threshold, there is a step discontinuity. The
threshold is determined directly by the human operator, as
the maximum depth difference which has to be considered
a surface discontinuity. If a discontinuity is present, a trian-
gle should not be created. Therefore, for four neighboring
pixels, we only consider 3D-points that are not along discon-
tinuities. If three of them satisfy this condition, a triangle
will be created in one of the last four style in figure 1. If
none of the four are along a discontinuity, two triangles will
be created, and the common edge will be the one with the
shortest 3D distance, as shown in the first two styles in figure
1.

Figure 2: The acquisition system. Three cameras placed
around a gate.

Repeating these steps for every mesh will lead to a volu-
metric function whose zero leveset locates the object surface.
The resulting object can be seen as a sort of convex hull ob-
tained by linking together the meshes and taking only the part
of the 3D space contained in their intersection.

3. EXPERIMENTAL RESULTS AND SYSTEM
DESCRIPTION

The proposed algorithm has been applied to a variety of test
images (of faces) acquired with a calibrated trinocular cam-

era system. The acquisition system is based on three syn-
chronized cameras Powershot G3 from Canon as shown in
figure 2. The acquired images are in 2272×1704 JPEG for-
mat and, after face segmentation, the area that is actually use-
ful for 3D reconstruction uses about 1MPixel of the 4 that are
available.

Figure 3: A depth-map from a face: a) the acquired images.
b) three different views from ’virtual observers’ of the depth-
map

In figure 3 we show the three segmented facial images
and the final 3D model. The reconstruction time is about 3
seconds on a Pentium IV 3GHz. In particular, using the de-
scribed approach we can obtain a very good depth estimation
of difficult facial zones were uniform skin color and highly
non-lambertian reflectance generate ambiguity in depth esti-
mation. The parameters K of equation (1) and λ of equation
(4) are determined heuristically from a set of facial images.
Anyway, we observed that the estimated values gives good
values for every facial image analyzed. The parameters can
be varied to gain some insight about the algorithm: for big
values of λ the smoothness dominates the correlation, result-
ing in a map with many flat blocks of pixels, whereas lit-
tle values of λ yields to an irregular depth map with many
wrong discontinuities. In our experiment, we chose the val-
ues K = 30 and λ = 5.

4. CONCLUSIONS

Fast 3D depth-map extimation from multiple calibrated im-
ages is a critical process. In order to perform this task we pre-
sented a reconstruction algorithm based on graph cuts theory.
We defined an energy function whose minimum represents
the solution to our problem and we implemented a technique
to improve the obtained depth maps. The parameters were
optimized for 3D face reconstruction. Anyway we also ob-
tained good results with completely different categories of
3D objects. In figure 4 we give an example of a scene con-
taining a dinosaur above a ship: in the second raw is possible
to view the good results for a virtual viewer placed in differ-
ent positions around the depth-map.



Figure 4: A depth-map from a scene: In the first raw the three
acquired images; in the second raw there are three different
views from ’virtual observers’ of the depth-map

One advantage of this approach is indeed its comptational
efficiency. In fact, we obtain a depth-map of the analyzed
scene using images of about one megapixel in less than 3
seconds using normal hardware (3GHz Pentium4 processor
with 1GB of RAM).
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