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ABSTRACT
This paper presents a melody spotting system based on Variable
Duration Hidden Markov Models (VDHMM’s), capable of locating
monophonic melodies in a database of raw audio recordings. The
raw audio recordings may either contain a single instrument per-
forming in solo mode, or an ensemble of instruments where one
of the instruments has a leading role. The melody to be spot-
ted is treated as a pattern and is first converted into a sequence of
note durations and music intervals. Based on this representation, a
VDHMM is constructed. For each raw audio recording in the data-
base, a sequence of note durations and music intervals is extracted
by means of a multipitch tracking algorithm. These sequences are
subsequently fed as input to the VDHMM that models the melody to
be located. The VDHMM employs an enhanced Viterbi algorithm,
previously introduced by the authors, in order to account for pitch
tracking errors and performance improvisations of the instrument
players. It then suffices to post-process the best-state sequence gen-
erated by the enhanced Viterbi algorithm in order to locate occur-
rences of the melody in question. Our method has been successfully
tested with a variety of cello recordings in the context of Western
Classical music, as well as with Greek traditional multi-instrument
recordings where clarinet has a leading role.

1. INTRODUCTION

Melody spotting can be defined as the problem of locating occur-
rences of a given melody in a set of music recordings. Depending
on the origin and representation of the melody to be spotted, as
well as the nature of the music recordings to be searched, several
variations of the melody spotting problem can be encountered in
the literature. For example, the melody serving as the “query data”
may originate from a whistled or hummed tune [1], or from a MIDI
keyboard [2]. The set of music recordings to be queried may consist
of MIDI data [3], monophonic audio recordings [2] or polyphonic
audio recordings [3]. Despite these variations most research effort
has focused on the application of standard Hidden Markov Models
to solve the above tasks [1], [2], [4].

In our approach, the melodic contour to be spotted is first trans-
formed to a sequence of note durations and music intervals. Such
a transformation is not restrictive, because it can be easily com-
puted from MIDI data or a printed score. The resulting sequence
is subsequently treated as a pattern and a Variable Duration Hid-
den Markov Model (VDHMM) is built in order to model it. Us-
ing VDHMM’s makes it possible to account for variability of note
durations and also permits to model variations of the pattern’s se-
quence of music intervals. The resulting VDHMM is then fed with
a feature sequence of note durations and music intervals that has
been extracted from a raw audio recording by means of a multi-
pitch tracking analysis model. We have focused on multi-pitch
tracking algorithms because we want to treat in a unified manner
both single-instrument recordings and multi-instrument recordings
where one of the instruments has a leading role. The VDHMM
generates a best-state sequence by means of an enhanced Viterbi al-
gorithm which has been previously introduced by the authors [5].
The enhanced Viterbi algorithm is able to deal with pitch tracking

errors stemming from the application of the multi-pitch algorithm
to the raw audio recordings. Once the best-state sequence is gener-
ated, it can be further processed by a simple parser in order to locate
instances of the musical pattern.

The novelty of our approach consists of the following:
a) a VDHMM is being employed to such problem for the first time,
providing a noticeably enhanced performance in the system. This
is because VDHMM allows the use of a robust, non-standard cost
function for the Viterbi algorithm it presents.
b) A unified treatment of both monophonic and non-monophonic
raw audio data.

Section 2 presents the pitch tracking procedure that is applied to
the raw audio recordings. Section 3 describes the methodology with
which the VDHMM is built in order to model the musical pattern.
Section 4 describes the enhanced Viterbi algorithm and the post-
processing stage that is applied on the best-state sequence. Imple-
mentation and experiment details are given in Section 5 and finally
conclusions are drawn in Section 6.

2. FEATURE EXTRACTION FROM RAW AUDIO
RECORDINGS

The goal of this stage is to convert a raw audio recording into a se-
quence of music intervals without discarding note durations. As it
will be later explained, the use of music intervals ensures invariance
to transposition of melodies, while note durations preserve infor-
mation related to rhythm. This type of intervalic representation is
an option between other standard music representation approaches
(e.g. [6]).

At first, a sequence of fundamental frequencies is extracted
from the raw audio recording. For the task of fundamental fre-
quency tracking, we used Tolonen’s multipitch analysis model [7].
Tolonen’s method splits the audio recording into a number of frames
by means of a moving window technique and extracts a set of pitch
candidates from each frame. In our experiments, we always choose
the strongest pitch candidate as the fundamental frequency of the
frame. For single instrument recordings, this is the obvious choice,
however for audio recordings consisting of an ensemble of instru-
ments, where one of the instruments has a leading role, this choice
does not guarantee that the extracted fundamental frequency coin-
cides with the pitch of the leading instrument. Although this can
distort the extracted sequence of fundamentals, such errors can be
dealt with by the enhanced Viterbi algorithm of Section 4.

Without loss of generality, let F = { f1, f2, . . . , fN} be the se-
quence of extracted fundamentals, where N is the number of frames
that the audio recording is split into. Each fundamental frequency is
in turn quantized to the closest half-tone frequency on a logarithmic
frequency axis and, finally, the difference of the quantized sequence
is calculated. The frequency resolution adopted at the quantization
step can be considered as a parameter to our method, i.e., it is also
possible to adopt quarter-tone resolution, depending on the nature
of the signals to be classified. For micro-tonal music, as is the case
with Greek Traditional Music, quarter-tone resolution is a more rea-
sonable choice.



Therefore, in order to imitate certain aspects of the human au-
ditory system, which is known to analyze an audio pattern on a log-
arithmic frequency axis, each fi is mapped to a positive number, say
k, equal to the distance (measured in half-tone units) of fi from fs
(the lowest fundamental frequency of interest, e.g. A1 = 55Hz),
i.e., k = round(12log2

fi
fs
), where round(·) denotes the roundoff

operation. As a result, sequence F is mapped to the sequence
L = {li; i = 1, . . . ,N}, where li ∈ [0, lmax] ( lmax is some maximum
value).

It is now straightforward to compute D, the sequence of music
intervals (frequency jumps) and note durations, from sequence L.
This is achieved by calculating the difference of L, i.e.,

D = {di = li+1 − li; i = 1, . . . ,N −1}

We assume that the di’s fall in the range [−G,G], where G is the
maximum allowable music interval. In the rest of this paper, we
will refer to di’s as “symbols” and to D as the “symbol sequence”.
This is because the range of values of the di’s can be considered as
an alphabet of 2G+1 discrete symbols.

It is worth noticing that, most of the time, li+1 is equal to li,
since each note in an audio recording is very likely to span more
than one consecutive frames. As a result, di = 0 for most of the
frames (i’s). Therefore, in the general case, we can rewrite D as

D = {0z1 ,m1,0z2 ,m2, . . . ,0zN−1 ,mN−1,0zN} (1)

where 0zk stands for zk successive zeros (i.e., zero valued di’s) and
each mi is a non-zero di. The structure of the sequence D, as shown
in equation (1), reveals the fact that D can actually be considered to
consist of subsequences of zeros separated by non-zero values (the
mi’s), with each mi denoting a music interval, i.e., the beginning of
a new note. The physical meaning of a subsequence of zeros is that
it represents a steady musical note. The length of the subsequence,
measured in frames, is actually the note duration.

3. MODELING THE MELODY TO BE SPOTTED BY
MEANS OF A VARIABLE DURATION HMM

We now turn our attention to the representation of the melody to be
spotted. Following the approach adopted in Section 2, the melody
will, also, first be mapped to a sequence of music intervals and
note durations. Let Ms = {( f r1, t1),( f r2, t2), . . . ,( f rM , tM)} be a
melody consisting of M notes, where for each pair ( f ri, ti), f ri is the
pitch of the i− th note (measured in Hz) and ti is the respective note
duration (measured in seconds). Each f ri can also be quantized to
the closest half-tone frequency, say lri. As a result, Ms is mapped
to the sequence Ls = {(lri, ti); i = 1, . . . ,M} where lri lies again in
the range 0 to lmax. In addition, the i− th note duration is mapped
to a sequence of zi zeros, say Ozi , where zi = round(ti/step), with
step being the step of the moving window technique that was used
for the raw audio recording (measured in seconds). Ms can now be
written, following equation (1), as

Ds = {0z1 ,mr1,0z2 ,mr2, . . . ,0zM−1 ,mrM−1,0zM} (2)

where mri = lri+1 − lri. Taking Ds as a starting point, a VDHMM
is built for the melody to be spotted. Specifically:
• One state is created for each subsequence of zeros Ozk , k =

1, . . . ,M. These are the Z-states, Z1, . . . ,ZM . Each Z-state only
emits zeros with probability equal to one.

• For each mri, i = 1, . . . ,M−1, a separate state is created. These
are the S-states, S1, . . . ,SM−1. Each S-state only emits the re-
spective mri with probability equal to one.

• The state duration for each Z-state is modeled by a Gaussian
probability density function, namely, pZi(t ) = G (t , m Zi , s 2

Zi
).

The values of m Zi and s Zi depend on the allowable tempo fluc-
tuation and time elasticity, due to performance variations of the
instrument players. By adopting different Z-states, we allow a
different state duration model for each note, something that is
dictated by the nature of real world signals.

• Although this HMM is expected to emit only one symbol each
time an S-state is visited, it is still useful, for reasons that
will be explained below (see section 4), to adopt a Gaussian
probability density function for each S-state as well, namely,
pSi(t ) = G (t , m Si , s 2

Si
).

• This is a left-to-right model, where each Z-state, Zi, is followed
by an S-state, Si, and each Si is definitely followed by Zi+1. It
must pointed out that, according to this approach, each note of
the melody corresponds to a pair of states, namely an S-state
followed by a Z-state, with the exception, of course, of the first
note (Figure 1).
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Figure 1: Mapping melody to a VDHMM

• A third type of state is added, both in the beginning and in the
end of the VDHMM of Figure 1, which we call the end-state.
Each end-state is allowed to emit any music interval (symbol)
with equal probability. If the end states are named E1 and E2,
the successor to E1 can be either Z1 or E2 and E2 is now the
rightmost state of the model. Furthermore the following state
transitions are allowed to take place: E1 → Z1, E1 → E2 and
E2 → E1. The state duration for the end states is modeled by
a uniform probability density function with a maximum state
duration equal to ≃ 1 seconds. This completes a basic version
of the VDHMM (shown in Figure 2).
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Figure 2: Basic version of the VDHMM

We have now reached the point where this basic version of the
VDHMM can be used as a melody spotter. If the sequence of mu-
sic intervals that has been extracted from the raw audio recording
is fed as input to this HMM and the Viterbi algorithm is used for
the calculation of the best-state sequence, the HMM is expected to
iterate between the end-states, E1 and E2, until the melody is en-
countered. Then the HMM will go through the sequence of Z-states
and S-states modeling the music intervals of the melody, will then
jump to E2 and will start again iterating between the end-states, un-
til one more occurrence of the melody is encountered or the end of
the feature sequence is reached. After the whole feature sequence
is processed, the end-states can be removed from the best-state se-
quence and the remaining state subsequences (if any) will corre-
spond to occurrences of the melody in the raw audio recording (this
is equivalent to a simple parsing algorithm).

The VDHMM described so far only works for exact matches
of the melody to be spotted in the raw audio recording, i.e. only
note durations are allowed to vary according to the Gaussian pdf’s
that model the state duration. However, if certain state transitions
are added, the VDHMM of Figure 2 can also deal with the cases of
missing notes and repeating subpatterns. Specifically:
• Missing notes can be accounted for, if certain additional state

transitions are permitted. Without loss of generality, we assume
that no more than one successive note can be missing. Follow-
ing the notation that we have so far adopted, if the i-th note is



expected to be absent, then a transition from Zi−1 to Si, denoted
as Zi−1 → Si, should also be made possible. This is because the
i-th note corresponds to the pair of states {Si−1,Zi} and simi-
larly, the (i+1)-th note starts at state Si, whereas the (i-1)-th note
ends at state Zi−1.

• In the same manner, accounting for successive repetitions of a
sub-pattern of the prototype, leads to permitting backward state
transitions to take place. For instance, if notes {i, i + 1, . . . , i +
K} are expected to form a repeating pattern, then clearly, the
backward transition Zi+K → Si−1 must be added. This is again
because the (i+K)-th note ends at state Zi+K , whereas the i-th
note starts at state Si−1.
Furthermore, it is also possible to relax the constraint that each

S-state emits only one symbol. This makes it possible to locate, in
the raw audio recording, variations of the melody where certain mu-
sic intervals are higher or lower than those defined in the melody.
For example, state Si may also emit symbols mri + 1 and mri − 1.
This is desirable if one is unsure of the exact score of the melody
to be searched, or if one wishes to locate with a single search varia-
tions of the melody. Following the above discussion, for a melody
consisting of a sequence of M notes, the respective HMM consists
of S = 2+M +M−1 = 2M +1 states.

4. THE ENHANCED VITERBI ALGORITHM

Translated in the HMM terminology, let H = {p ,A,B,G } be the
resulting variable duration HMM, where p Sx1 is the vector of ini-
tial probabilities, AS×S is the state transition matrix and B(2G+1)×S
is the symbol probability matrix (G is the maximum allowed mu-
sic interval). Regarding the GS×2 matrix, the first element of the
i-th row is equal to the mean value of the Gaussian function model-
ing the duration of the i-th state and the second element of the i-th
row is the standard deviation of the respective Gaussian. For the
VDHMM of Figure 2, both Z1 and E1 can be the first state, suggest-
ing that p (1) = p (2) = 0.5 and p (i) = 0, i = 3 . . .S. In addition,
A is upper triangular with each element of the first diagonal being
equal to one and all other elements of A have zero values, unless
backward transitions are possible, as is the case when modeling re-
peating subpatterns. Finally, for the Z-states, each column of B
has only one element with value equal to 1, BZi(ds = 0) = 1 (and
all other elements are zero valued) and similarly, for each S-state,
BSi(ds = mri) = 1 and all other elements are zero valued, unless of
course, a S-state is allowed to emit more than one music intervals.

In practice, sequence D, which has been extracted from a raw
audio recording, suffers from a number of pitch-tracking errors.
Such errors are more frequent when dealing with multi-instrument
recordings and appear as subsequences of symbols of D whose sum
is equal to zero or to a mri of the pattern to be located (for a study of
pitch-tracking errors see [5], [9]). If H employs a standard Viterbi
algorithm for the calculation of the best-state sequence, a melody
spotting failure will result, as H will only iterate between the end-
states. This can be accommodated if the enhanced Viterbi algorithm
that has been introduced by the authors in [5] is adopted. A de-
tailed description of the algorithm can be found in [5]. Basically,
the essence of this algorithm is to be able to account for all possible
pitch-tracking errors (e.g. pitch doubling errors) by incorporating
them in the cost function. In this paper, we will only summarize the
equations for the calculation of the best-state sequence.

In order to proceed further, certain definitions must first be
given. For a given observation sequence D = {d1d2 . . .dN} and
a discrete observation VDHMM H , let us define the forward vari-
able at( j) as in [8], i.e.,

at( j) = P(d1d2 . . .dt , state j ends at t|H ), j = 1 . . .S (3)

that is at( j) stands for the probability that the model finds itself in
the j-th state after the first t symbols have been emitted. It can be
shown that ([8]),

at( j) = max
1≤t ≤T,1≤i≤S,i6= j

[d t(i, t , j)] (4)

d t(i, t , j) = at−t (i)Ai j p j(t )
t

Õ
s=t−t +1

B j(ds) (5)

where t is the time duration variable, T is its maximum allowable
value within any state, S is the total number of states, A is the state
transition matrix, p j is the duration probability distribution at state
j and B is the symbol probability matrix. In other words, the prob-
ability of a path ending its state sequence at state j, depends on
all possible ways to have reached state j, including the possibility
of remaining at state j for t successive time instances. We have
already made the assumption that, p j , follows a Gaussian prob-
ability density function. Equations (4) and (5) suggest that there
exist (S×T −T ) candidate arguments, d t(i, t , j), for the maximiza-
tion of each quantity at( j). In order to retrieve the best state se-
quence, i.e., for backtracking purposes, the state that corresponds
to the argument that maximizes equation (4) has to be stored in a
two-dimensional array y , as y ( j, t).
Therefore, y ( j, t) = argmax[d t(i, t , j)],1 ≤ t ≤ T,1 ≤ i ≤ S, i 6= j
In addition, the number of symbols spent on state j is stored in a
two-dimensional matrix c, as c( j, t). We notice that in equation (4),
each candidate argument, d t(i, t , j), refers to t symbols of the ob-
servation sequence and this is why the product Õ t

s=t−t +1 B j(ds) is
calculated in (5). If the value of å t

s=t−t +1 ds is equal to zero, this
indicates a possible pitch tracking error cancellation. Thus, if these
successive symbols add to zero, one must take into consideration
that the symbols dt−t +1, . . . ,dt−1,dt , could be the result of a pitch
tracking error, and must be replaced by a zero that lasts for t suc-
cessive time instances. Of course, since one cannot be sure that
this cancellation is the correct action, it is left to the optimal option
process to decide, by providing the cancellation option as an ex-
tra argument in the optimization. This is quantified by considering
(SxT −T ) additional d̂ arguments to augment equation (4), namely

d̂ t(i, t , j) = at−t (i)Ai j p j(t )
t

Õ
s=t−t +1

B j(ds = 0) (6)

Therefore, for the Z-states equations (4) and (5) become

at( j) = max
1≤t ≤T,1≤i≤S,i6= j

[d t(i, t , j), d̂ t(i, t , j)] (7)

d t(i, t , j) = at−t (i)Ai j p j(t )
t

Õ
s=t−t +1

B j(ds) (8)

d̂ t(i, t , j) = at−t (i)Ai j p j(t )
t

Õ
s=t−t +1

B j(ds = 0), (9)

i f
t

å
s=t−t +1

ds = 0

Thus, maximization is now computed over all d and d̂ quantities.
It is also worth noticing, that, if (7) is maximized by a d̂ argument,
say d̂ t(i, t , j), then the number of symbols spent at state j is equal to
t , as is the case with the standard VDHMM. In addition, for state j,
state i is the winning predecessor state. If, in the end, it turns out that
for some states of the best-state sequence, a symbol cancellation
took place, it is useful to store this information in a separate two-
dimensional matrix, s, by setting the respective s( j, t) element equal
to “1”. Matrices y and c are still used for backtracking purposes.

If at( j) refers to an S-state, then a symbol summation is desir-
able, if the sum, å t

s=t−t +1 ds is equal to the actual music interval
associated with the respective S-state of the VDHMM. In the same
rationale as before, if this holds true, the whole subsequence of sym-
bols is treated as one symbol equal to the respective sum and again,
(SxT −T ) additional d̂ arguments must be computed for at( j), ac-
cording to the following equation:

d̂ t(i, t , j) = at−t (i)Ai j p j(t )B j(
t

å
s=t−t +1

ds) (10)



Therefore, for the S-states equations (4) and (5) become

at( j) = max
1≤t ≤T,1≤i≤S,i6= j

[d t(i, t , j), d̂ t(i, t , j)] (11)

d t(i, t , j) = at−t (i)Ai j p j(t )
t

Õ
s=t−t +1

B j(ds) (12)

d̂ t(i, t , j) = at−t (i)Ai j p j(t )B j(
t

å
s=t−t +1

ds), (13)

i f B j(
t

å
s=t−t +1

ds) > 0

Similar to the previous case, maximization is again computed over
all d and d̂ quantities. If (11) is maximized by a d̂ argument, say
d̂ t(i, t , j), then the number of symbols spent at state j is equal to t ,
as is the case with the standard variable duration model. In addition,
state i is the predecessor of state j in the path. If a symbol summa-
tion took place, it is useful to store this information in the s matrix,
that was previously introduced, by setting the respective s( j, t) ele-
ment equal to “1” (a zero indicates that no symbol summation took
place). Matrices y and c are still used for backtracking purposes,
as it is done in the standard VDHMM. The need to account for pos-
sible symbol summations reveals the fact that, although in the first
place, the HMM was expected to spend one frame at each S-state, it
turns out that a Gaussian probability density function must also be
associated with each S-state. However, upon initializing the respec-
tive mean values and standard deviations for these Gaussians, T , the
maximum allowable state duration, should have a smaller value for
the S-states, compared to the Z-states.

5. EXPERIMENTS AND IMPLEMENTATION DETAILS

As it has already been mentioned, Tolonen’s multipitch analysis
model [7] was adopted as a fundamental frequency tracker for our
experiments and certain parameter tuning was decided. Specifi-
cally: the length of the moving window was set equal to 50ms
(each window was multiplied by a Hamming function) and a 5ms
step was adopted between successive windows. This small step en-
sures that rapid changes in the signal are captured effectively by
the pitch tracker, to the expense of increasing the length of the fea-
ture sequence. The pre-processing stage involving a pre-whitening
filter was omitted. For the two channel filter bank, we used butter-
worth bandpass filters with frequency ranges 70Hz− 1000Hz and
1000Hz−10KHz. The parameter which controls frequency domain
compression was set equal to 0.7. From each frame, the strongest
candidate frequency returned by the model, was chosen as the fun-
damental frequency of the frame.

Our method was tested on two raw audio data sets: the first
set consisted of commercially available solo Cello recordings of J.S
Bach’s Six Suites for Cello (BWV 1007-1012), performed by seven
different artists (namely Boris Pergamenschikow, Yo-Yo Ma, Anner
Byslma, Ralph Kirshbaum, Roel Dieltiens, Peter Bruns and Paolo
Beschi). The printed scores of these Cello Suites served as the basis
to define (with the help of musicologists) a total of ≃ 50 melodies
consisting of 3 to 16 notes. These melodies were manually con-
verted to sequences of note durations and music intervals, follow-
ing the representation adopted in Section 3. For the quantization
step, half-tone resolution was adopted and an alphabet of 121 dis-
crete symbols was used, implying music intervals in the range of
−60 . . .+60 half-tones, i.e., G = 60. The duration of the Z-states of
the resulting VDHMM’s was tuned by permitting a 20% tempo fluc-
tuation, in order to account for performance variations. The maxi-
mum state duration for the S-states was set equal to 25ms. Depend-
ing on the pattern, e.g. for moving bass melodies, certain S-states
were allowed to emit more than one music intervals, in order to be
able to locate such pattern variations. The proposed method suc-
ceeded in locating approximately 95% of the pattern occurrences.

The second raw audio data set consisted of ≃ 140 commercially
available recordings of Greek Traditional music performed by an

ensemble of instruments where Greek Traditional Clarinet has a
leading role. A detailed description of the music corpus can be
accessed at http://www.di.uoa.gr/pikrakis/melody spotter.html.

Due to the fact that Greek Traditional Music is micro-tonal,
quarter-tone resolution was adopted (parameter G was set equal to
60 quarter-tones in this case). Although printed scores are not avail-
able for this type of music, following musicological advice, we fo-
cused on locating twelve types of patterns that have been shaped
and categorized in practice over the years in the context of Greek
Traditional Music (a description of the patterns can be found in [9]).
These patterns exhibit significant time elasticity due to the impro-
visational attitude of the musicians and it was therefore considered
appropriate to permit a 50% tempo fluctuation, when modeling the
Z-states. In addition, the maximum state duration for the S-states
was set equal to 50ms, in order to account for the increased number
of pitch-tracking errors due to the presence of multiple instruments.
Our method successfully spotted 83% of the pattern occurrences.
This reduced performance is mainly due to the fact that, despite the
application of an enhanced Viterbi algorithm, the leading instru-
ment’s melodic contour can often be severely distorted in the ex-
tracted feature sequence of an audio recording, due to the presence
of the accompanying instrument ensemble.

A prototype of our melody spotting system was initially devel-
oped in MATLAB and was subsequently ported to a C-development
framework.

6. CONCLUSIONS

In this paper we presented a system capable of spotting monophonic
melodies in a database of raw audio recordings. Both monophonic
and non-monophonic raw audio data have been treated in a uni-
fied manner. A VDHMM has been employed for the first time as a
model for the patterns to be spotted. Pitch tracking errors have been
dealt with an enhanced Viterbi algorithm that results in noticeably
enhanced performance.
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