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ABSTRACT 
 

A practical approach for the design of multiple-description 
scalar quantization of speech is presented that conforms to 
standard G.711 PCM. The method chiefly consists of an 
index assignment algorithm that enables the side decoders 
to exhibit SNR characteristics comparable to those of the 
standard logarithmic quantizer. With two-channel trans-
mission of multiple descriptions, an increase in robustness 
to lossy channels is obtained without violation of the stan-
dard coding method. The method found is suitable for the 
design of multiple descriptions of any given scalar quan-
tizer, e. g. one within a complex speech coder. 
 

1.  MULTIPLE-DESCRIPTION CODING 
 

Multiple-description coding [1] provides a transmission 
link with diversity in order to improve robustness to chan-
nel breakdown. The coded signal is split into two or more 
descriptions, or partial codes, which are transmitted over 
the same number of different channels. These channels may 
indeed consist of different physical links, or of different 
packets transmitted through networks like the internet. The 
priciple of a two-channel multiple-description (MD) coded 
transmission is shown in fig. 1. From the input signal, x(n), 
the encoder generates two descriptions C1 and C2 to be sent 
over two lossy channels. If no loss occurs, both descriptions 
will be used by the central decoder to reconstruct the signal 
y0(n) with high quality. If one of the descriptions is lost, the 
received part of the code will enable its corresponding side 
decoder to yield a reduced-quality version of the output 
signal, y1(n) or y 2(n). The transmission will be interrupted 
only when both descriptions are lost. 
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                                                                                                   y2(n) 
 

                                   C2 
 

Fig. 1 Structure of a multiple-description coded 
transmission with two channels 

The design of MD coders is subject to conflicting require-
ments [1]. If the side decoders were optimized for high 
signal quality, given the bit rates R1 and R2 for C 1 and C2, 
little would be gained by combining both descriptions in the 
central decoder, which would then yield a similarly high 
quality, but at a considerably increased bit rate of 
R = R1 + R 2. If, on the other hand, the central decoder were 
designed for minimum distortion at a bit rate of R, any 
splitting of the code would result in poor performance of 
the side decoders. Therefore, the objective is to find a com-
promise for central and side decoder qualities. 
 

For multiple-description scalar quantizers, a design algo-
rithm was introduced in [2] which iteratively optimizes 
both the side decoders and the central decoder for a known 
probability density function of the input signal. The results 
obtained depend on the method of assigning pairs of code 
indices (for two MD channels) to the quantizer steps. 
 

While recently much attention has been given to MD image 
coding [1], relatively few publications have dealt with MD 
coding of speech. An early method consists of splitting 
PCM or DPCM coded speech signals into odd and even 
samples [3] [4]. MD scalar quantization within a transform 
coder was investigated [5], and diversity approaches for 
several speech coders were proposed [6] [7]. Another ap-
proach, which consists of transmission of the full-rate 
coded speech signal and low-rate additional information via 
two channels, results in unbalanced MD codes [8] [9] [10] 
[11]. 
 

This work focuses on the design of balanced multiple de-
scriptions for a standard logarithmic PCM speech codec. In 
the following, the design of the MD PCM codec is 
described and some results are discussed. 
 

2.  DESIGN OF THE MD CODEC 
 

2.1  Objectives 
The two-channel MD codec is based on a standard G.711 
PCM speech codec [12]. In the encoder, the signal sample 
x(n) is quantized according to the logarithmic A-law com-
pression characteristic. Then, the quantizer step index is 
converted into a pair of indices which form the desriptions 
C1 and C2 to be transmitted. If both indices are received, the 
central decoder recovers the quantizer step index and issues 
the corresponding reconstruction value y0(n), again accord-



i 

ing to G.711. The design aims at balanced descriptions, i. e. 
equal bit rates (R2 = R1) and equal distortions of the side 
decoders. Furthermore, it is desirable that the side decoders 
show a behaviour comparable to logarithmic quantization 
with regard to their signal-to-noise ratio (SNR) characteris-
tics, i. e., like the central decoder, yield a virtually constant 
SNR for a wide range of signal levels. 
 

In order to preserve conformity to the standard PCM codec, 
neither the quantizer part of the encoder nor the central 
decoder of the MD codec are subject to the optimization 
process. Thus the design problem reduces to finding an 
appropriate index assignment strategy and then calculating 
the side decoders which result from the central decoder and 
the actual index assignment. 
 

2.2  Index Assignment 
An example of an index assignment for the side decoder 
rate of R 1 = 3 bit/sample is shown in fig. 2. The quantizer 
step codewords are renumbered according to their recon-
struction values and then progressively assigned to cells of 
the matrix from upper left to lower right. The row index i 
and the column index j form the two descriptions of the 
corresponding quantizer index. For minimum side decoder 
distortion, the occupied cells are as close to the main diag-
onal as possible [2]. In order to obtain balanced distortions, 
care was taken to find a progression pattern that results in 
increments and decrements evenly distributed among both 
side decoder indices. 
 
 
                                      j 

 0 1 2 3 4 5 6 7 
0 0 2 3      

1 1 4 6 10     

2 5 7 9 12 13    

3  8 11 14 16 20   

4   15 17 19 22 23  

5    18 21 24 26 30 

6     25 27 29 32 

7      28 31 33 

 
Fig. 2 Example of an index assignment matrix 

for balanced multiple descriptions 
 
 
The standard G.711 PCM codec has 256 quantizer levels, 
which corresponds to a bit rate of R0 = 8 bit/sample. Side 
decoder rates of 4 to 7 bit/sample were considered. With 
R1 = 4 bit/sample, all cells of the index assignment matrix 
are occupied. As there is no redundancy in the descriptions 
(R = 2 R1 = R0 = 8 bit/sample), the side decoder perform-
ance will be poor. Increasing R1 results in an incompletely 
populated matrix (R > R0), which means introducing redun-
dancy and therefore correlation between the descriptions, 
and thus in decreasing side decoder distortion. 
 

Usually, the selection of the main diagonal and additional 
pairs of diagonals of the matrix results in a higher number 
of index pairs than necessary. Consequently, a number of 

index pairs on the outer diagonals have to be discarded. In 
order to preserve the logarithmic behaviour, the assigned 
cells should be spread evenly along the diagonals, while re-
taining the symmetry of the assignment pattern. For this 
purpose, a two-pass discarding algorithm was found. In the 
first pass, every second index pair on the outer diagonals is 
discarded, starting from the centre of the matrix. If necess-
ary, remaining index pairs are discarded in a second pass, 
again beginning at the centre. The algorithm is stopped as 
soon as the number of assigned index pairs equals the 
desired number of quantizer levels (i. e. 256). Fig. 3 shows 
a part of the resulting index assignment matrix for 
R1 = 6 bit/sample (or R = 12 bit/sample). 
 
 
                     j 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Upper left corner of the index assignment 
matrix for R0 = 8, R 1 = 6 bit/sample; 

 “X” denotes a discarded index pair. 
 

 
 
2.3  Calculation of the Side Decoders 
For squared error measures, the optimum reconstruction 
level of a side decoder for index i (or j ) is equal to the ex-
pectation value of the combined input signal distributions 
within the quantizer intervals in row i (or j , respectively) 
[2]. Since the logarithmic quantizer is designed for a wide 
range of input levels, no distinct known distribution can be 
used for the optimization of the side decoders. Instead, 
equal probabilities of the quantizer intervals and uniform 
signal distribution within each interval were assumed for 
simplification. Then, the optimum reconstruction level for 
any side decoder index is equal to the mean value of the 
central decoder levels involved. 
 

3.  RESULTS 
 

3.1  SNR Measurement 
The side decoders were evaluated by measuring the SNR as 
a function of the variance of a zero-mean Gaussian white 
noise input. The results for side decoder rates of R1 = 7, 6, 
and 5 bit/sample are shown in fig. 4. MD coding without 
redundancy, i. e. with R1 = 4 bit/sample, turned out to be 
useless, as it resulted in extreme distortions of the side de-

 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 2 3                     

1 1 4 6 10                   

2 5 7 9 12 X                 

3   8 11 13 15 18               

4     14 16 17 20 X             

5       X 19 21 23 26           

6         22 24 25 28 X         

7           X 27 29 31 34       

8             30 32 33 36 X     

9               X 35 37 39 42   

10                 38 40 41 44 X 

11                   X 43 45 47

12                     46 48 49
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coder output. With some redundancy, however, the signals 
reconstructed by the side decoders show the desired 
behaviour. But for very low input levels, the SNRs are per-
fectly balanced. 
 

For comparison, the SNR measurement was also carried out 
for single-description logarithmic PCM with bit rates of 
R0 = 3 to 8 bit/sample (cf. fig. 5). In all cases considered 
here, the central decoder is identical to 8-bit PCM, indepen-
dently of the side decoder rates. The SNR of the side de-
coder output with R1 = 7 bit/sample is only about 2 dB 
below the SNR of 7-bit PCM, R1 = 6 bit/sample yields a 
characteristic almost identical to 5-bit PCM, and lowest 
redundancy (R1 = 5 bit/sample) roughly corresponds to 
3-bit logarithmic PCM. 
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Fig. 4 SNR of both side decoders as a function 
of input level for three bit rates; a level of 
0 dB corresponds to four-sigma loading of 
the quantizer. 
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Fig. 5 SNR characteristics of logarithmic PCM 
for several bit rates; R0 = 8 bit/sample cor-
responds to standard G.711 A-law PCM. 

 

 
 
3.2  Packetized MD Coded Speech 
In order to judge the behaviour of multiple-description 
coded transmission, an experiment on packetized PCM 
speech was carried out. For consecutive coding intervals of 
20 ms duration, two packets were generated of which each 

contains one of the coded descriptions (C1 or C2). Statisti-
cally independent packet losses were simulated, and de-
coding was performed using central or side decoders ac-
cording to the number of packets received for each interval. 
If both packets and, consequently, both descriptions were 
lost, the missing speech samples were replaced by zero 
values. The simulations were done using a speech data file 
of 6.5 s duration. 
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Fig. 6 (a) SNR and (b) segmental SNR of MD 

coded speech signals as a function of the 
packet loss ratio 

 
 
Fig. 6 shows the SNR and segmental SNR results obtained 
for three side decoder bit rates. For comparison, the hori-
zontal dashed lines indicate the SNRs of lossless trans-
mission (i. e. of the central decoder) and the dashed curves 
show the results of conventional (“single-description”) 
packetized transmission with zero substitution for packet 
losses. 
 

A side decoder bit rate of R1 = 5 bit/sample does not yield 
any improvement compared to single-description coding, 
neither in terms of SNR nor of segmental SNR. This corre-
sponds to the findings of informal listening tests: the de-
coded speech signals are easily distinguishable from each 
other, but no preference can be stated. With higher rates, 
however, significant gains can be achieved for packet loss 
ratios of up to 20 %. The resulting SNRs for both rates 
(R1 = 6 or 7 bit/sample) are significantly higher than those 
of single-description transmission. Again, the results were 



confirmed in informal listening tests: while only few zero-
signal substitutions remain in the decoded speech, most 
packet losses are transformed into soft rustling noises 
which are still highly acceptable at R1 = 6 bit/sample and 
almost inaudible at a side decoder rate of 7 bit/sample. 
 

4.  CONCLUSION 
 

The practical approach for the design of multiple-descrip-
tion coded logarithmic PCM chiefly consists in an index 
assignment method that achieves “logarithmic” behaviour 
of the side decoder output signals. With two-channel trans-
mission of multiple descriptions, an increase in robustness 
to lossy channels is obtained without violation of the 
standard coding method. Especially with 50 % redundancy 
added (i. e. a total rate of 12 bit/sample), a suitable compro-
mise was found of moderately increased bit rate and - with 
one channel broken down - noisy but still highly acceptable 
speech quality. 
 

Apart from link failure, multiple-description coding of 
PCM speech signals can also enhance robustness to losses 
in packetized speech transmission, e. g. within multi-media 
applications. With the bit rates chosen appropriately, single 
packet losses will only cause a slight decrease of the signal 
quality but not a complete drop-out of the signal. 
 

The index assignment strategy outlined above is suitable for 
the design of multiple descriptions of any given scalar 
quantizer, e. g. one within a more complex speech coder, if 
the side decoders are required to preserve the characteristics 
of the original quantizer. 
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