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ABSTRACT
In previous published works [8, 3], we have studied the es-
timation of nonstationary monocomponent signals on short
time-windows. Both of the instantaneous amplitude and fre-
quency (IA/ IF) were modeled by polynomial functions. The
maximization of the likelihood function was achieved by us-
ing a stochastic optimization technique: the Simulated An-
nealing (SA). The proposed algorithm was superior to the
existing methods in terms of estimation accuracy and robust-
ness in the presence of low Signal to Noise Ratio (SNR).
Motivated by its efficiency and optimality in the monocom-
ponent case, this paper is an extension for multicomponent
signals. The synthesis algorithm iteratively reconstructs the
signal, one component per iteration. During each iteration,
the IA and IF of each component are synthesized by us-
ing Maximum Likelihood (ML) estimators and the SA tech-
nique. Monte Carlo simulations are presented and compared
to the appropriate Cramer-Rao Bounds (CRB). This proves
the efficiency and the performance of the algorithm. More-
over it underscores the superiority on previous methods to
estimate the crossing frequency trajectories which is a great
challenge related to the low sample number.

1. INTRODUCTION

In this work, we consider multicomponent signals with time-
varying amplitude and frequency defined as:

s[n] =
K

å
i=1

Ai[n]exp( j F i[n]) . (1)

We assume the presence of K components. F i[n] is the phase
of the ith component. Its amplitude Ai[n] is assumed to be
positive. We note Fi[n] its instantaneous frequency. Such
signals arise in many real life applications such as mechan-
ics, radar, sonar and wireless communications.

In [1, 2, 7, 8, 9], polynomial phase and amplitude mod-
els were assumed. In [2] ML estimators were derived. The
optimization problem was solved using the Higher Ambigu-
ity Function (HAF) which is a suboptimal technique. Then it
was followed by an iterative minimization algorithm: BFGS
quasi-Newton technique. It is well-known that this does not
ensure global optimality. Not only this method needs high
SNR, but its efficiency is limited due to the cross terms in
presence of multiple components. Thus, it is adapted to lin-
ear Frequency Modulation and fails to estimate higher non-
linear modulation.

As we are interested in modeling any kind of nonstation-
arity, we propose to locally track modulation changes. The
analysis proposed in this paper extends some previously pub-
lished works [4, 5, 6], where only monocomponent signals

were processed. We considered the signal on short contigu-
ous segments. Then, on each one, we approximated both the
IA and IF by second order polynomials. The model para-
meter estimation was carried out using a ML principle, op-
timized via the SA technique. The algorithm presented in
[4, 5, 6] was robust in the presence of low SNR and more
efficient than the HAF.

Now, we extend the study to multicomponent signals on
local segments. We give the IA and IF polynomial models
for each component in Section 2. The ML procedure and the
SA concept, useful for the estimation process, are briefly de-
scribed too. In Section 3, the signal reconstruction is accom-
plished by an iterative algorithm, we perform a component-
by-component estimation. At each iteration, the IA and IF
estimates of one component are provided. The algorithm
ending is controlled by a whiteness test on the residual signal.
In Section 4, the CRBs are established for parameter models.
In section 5, some numerical examples illustrate the perfor-
mance in estimating frequency crossing-trajectories. Section
6 concludes on the efficiency of the proposed algorithm in
presence of low SNR, quadratic Amplitude and Frequency
Modulation (AM/FM).

2. PROBLEM FORMULATION

Let us consider y[n] a discrete time process consisting in
the sum of deterministic multicomponent signals with AM
and FM modulation embedded in an additive white Gaussian
noise e[n] with zero mean and unknown variance.

y[n] = s[n]+ e[n], f or
−N

2
≤ n ≤

N
2

, (2)

where N + 1 is the sample number, assumed to be odd for
simplicity. s[n] is given by (1). We propose to locally follow
highly modulations. We consider the IA and IF on short time
segments whose lengths are about three time periods.

2.1 Parametric model

According to Weierstrass theorem and thanks to the short-
ness of the segment, we assumed in [6], second order poly-
nomial functions are sufficient to approximate the IA and IF
on [−N

2 ,

N
2 ]. More specifically, let us consider g0[n],g1[n] and

g2[n] a second order polynomial base, defined on [−N
2 ,

N
2 ],

with order equal to 0,1 and 2 respectively. The parametric
description of the IA, the IF and the continuous phase of the



ith component are given by the following:

Ai[n] = å 2
k=0 ai,k gk[n]

Fi[n] = å 2
k=0 fi,k gk[n]

F i[n] = q i,0 +2p
(

å n
k=−N

2
Fi[k]− å 0

k=−N
2

Fi[k]
)

.

(3)

The initial phase q i,0 is referenced to the center window
in order to minimize estimation errors [3]. All model pa-
rameters are real valued. Actually, we have to estimate
q = {q 1, ...., q K} where q i = {ai,0,ai,1,ai,2, q i,0, fi,0, fi,1, fi,2}

is a set of seven parameters of the ith component.
In [4, 5, 6], we employ a discrete orthonormal polyno-

mial base. It allows uncoupled estimation of amplitude para-
meters for a monocomponent signal. This is no longer true
for parameters that belong to distinct components. Neverthe-
less, a good estimation accuracy is still obtained by applying
this base.

2.2 Maximum Likelihood estimator

Since the noise is assumed to be a white Gaussian process,
the ML procedure is equivalent to the least squares (LS). So,
we have to minimized the following equation

q̂ = argmin︸ ︷︷ ︸
q ∈´ 7K

N
2

å
n=−N

2

|y[n]− ŝ[n]|2 (4)

Where y[n] is the noisy observations. ŝ[n] is the signal model,
computed by substituting (3) into (1) for a given q . Due to
the nonlinearity of equation (4), this cannot be solved ana-
lytically. In [4, 5, 6], the SA technique was used because
of its significant efficiency, when a desired global extremum
is hidden in many local extrema [10]. Its implementation
was relatively simple and has provided accuracy in estimat-
ing parameters for monocomponent signals using ML esti-
mators. Hence, it had advantages on suboptimal techniques.
For more details, see [6]. Aiming to use it in further sections,
the main steps, involved in the SA technique, are summa-
rized as follows. For simplicity, we here note by q the set of
parameters to estimate.

Given the initialization of q , we run I iterations of three
first steps. I is a fixed iteration number, which is asymptoti-
cally determinate in order to accelerate the convergence.

1. We generate new candidates q C from a Gaussian proba-
bility law, centered on q and with variance d . d is an
agitation value which avoids converging to local mini-
mum.

2. If q C minimizes the LS, then we set q = q C, otherwise q
value is not modified.

3. Then, generate u from a uniform law on [0,1], if u ≤ 2
3 ,

then d = 0.97 ∗ d . This step linearly reduces the ag-
itation value in a random way in order to increase the
convergence rate.

4. Since the Ith iteration is achieved, we compare the mean
square errors (MSE) of the parameter estimates with an
asymptotic MSE threshold. We restart the estimation if
the evaluated MSE is not the lowest.

3. ITERATIVE RECONSTRUCTION SIGNAL

Instead of simultaneously considering all the component
parameters, which induces a high computational cost, we
develop an iterative algorithm. We process the signal
component-by-component. During each iteration, the esti-
mation of Ai[n] and Fi[n] for the ith component are carried
out by using the SA technique and equation (4). Thus, we
avoid to estimate 7 K parameters at the same time. The algo-
rithm main steps are as follows.
1. Set i = 1,
2. Initialize the parameter values of the ith component from

the Fast Fourier Transform (FFT) of the noisy signal y[n].
q i = {aFFT ,0,0, q FFT , fFFT ,0,0},

3. Apply the SA algorithm in order to estimate q i.
4. Once the frequency and the amplitude of the ith compo-

nent are evaluated using (3), we reconstruct the compo-
nent si[n] = Ai[n].e j F i[n]. We remove it from the noisy
signal to generate a new noisy signal y[n].

5. Check if the remained signal y[n] is a white process. In
this case, the component estimation is finished. If the
answer is negative, set i = i+1 and restart step 2 in order
to estimate the next component.

Since the estimation algorithm is iterative, the success of es-
timating one component depends on all the previous com-
ponent estimates. So, we are optimal for a monocomponent
case only. Nevertheless, as we show in Section 5, the ac-
curacy on the estimation is sufficiently high. Moreover this
synthesis algorithm provides an estimation of the component
number K. Here, we note that the resolution on the Time-
Frequency plan is critical due to the low sample number. So
estimating K from ridges in the spectrogram or in the MCE-
TFD representation (minimum cross entropy time frequency
distribution) [1] is difficult. Furthermore the estimation of K
is conditional to the SNR level.

4. CRAMER RAO BOUNDS

In [2], the Fisher Information Matrix (FIM) was given for
amplitude and phase parameters for multicomponent signals.
So, we derive it for amplitude and frequency parameters. The
FIM for q is then given by

FIM(q ) =
2

s 2 Re






[
A

H
i A j A

H
i f j

f H
i A j f H

i f j

]

1 ≤ i ≤ K
1 ≤ j ≤ K





(5)

where Ai = [g0(n).e j F i(n)
, g1(n).e j F i(n)

, g2(n).e j F i(n)], and
f i = j [h −1(n).si(n), h 0(n).si(n), h 1(n).si(n), h 2(n).si(n)].

F i(n) and si(n) are vectors of the phase and signal
values of the ith component at each time n. si(n) is equal to
Ai(n).e j F i(n). We note n = [−N

2 ,

−N
2 + 1, ...,

N
2 ] , h −1[n] = 1

and h i[n] = 2p ( å n
k=−N

2
gi[k] − å 0

k=−N
2

gi[k] ) for i = 0,1,2

and n ∈ [−N
2 ,

N
2 ] . (.) denotes the multiplication element by

element of the vector entries.
The CRB for q is the inverse of the FIM matrix given by (5).
For a monocomponent signal, A

H
i f j is purely imaginary.

So amplitude and frequency parameters are decoupled.
An orthonormal base makes A

H
i Ai a diagonal matrix and

amplitude parameters become uncoupled. It is not yet the



case in presence of multiple components. Moreover, we note
from (5) that the FIM for the frequency and the amplitude
parameters are functions of the signal components si[n], the
phases F i[n] and the base functions gi[n]. The FIM depends
on the frequency and the amplitude parameters only through
the phase and the amplitude waveform. We also note that the
FIM is a badly conditioned matrix, when crossing frequency
trajectories occur and tends to a singular matrix when the
difference in component IFs approaches zero.

5. EXAMPLES

In this section, we give some numerical examples demon-
strating the synthesis algorithm. We also evaluate the CRB
that was given in Section 4. All the considered signals are of
33 samples. The sampling frequency is 1 Hz. The SNR is
defined as the ratio of the energy of a constant amplitude sig-
nal, whose energy equals that of the time-varying signal, to
noise variance. That is a global definition on all the non-
stationary signal. So the get value is not locally correct.
Two-component of quadratic AM/FM signals, embedded in
Gaussian noise, are used. The experimental plots are based
on 50 independent noise realizations. The IA and IF are de-
picted in Figure 1. Two cases are discussed.
• Case I: The Frequency trajectories are well separated

Fig.1(a). The bottom left figure shows the IA of this case.
• Case II: The Frequency trajectories are crossing one the

other Fig.1(b). The corresponding IA are shown in the
bottom right figure.

(a) (b)
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Figure 1: IF and IA of the two-component signal: Left figures
illustrate the case I. Right figures illustrate the case II.

It is shown in Fig.2(a) and (b) the reconstruction of the fre-
quency, the amplitude and the signal of case I, using the it-
erative algorithm. Estimated curves are plotted versus the
original ones for SNR equal to 20 dB and 10 dB. Fig.3 dis-
plays the IF and IA estimates versus the original ones in case
II for SNR equal to 20 dB and 10 dB too.

The estimated curves of the IF are close to the original
ones. In the opposite, the IA estimation is less accurate. This
effect is due, as we say before, to the estimation dependence
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Figure 2: Case I: (a) AM/FM Estimation and (b) signal reconstruc-
tion: (dashed line) and (dashed-dotted line) for SNR equal to 20 dB
and 10 dB respectively, versus the original curves (solid line).
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Figure 3: Case II: AM/FM Estimation: (dashed line) and (dashed-
dotted line) for SNR equal to 20 dB and 10 dB respectively versus
the original AM/FM modulation( solid line).



on the ability to estimate the individual IA and IF of the
two signal components. We also have to take into account
the low number samples, the nonlinear FM which means cu-
bic phase, and especially the nonlinear AM. However, the
proposed algorithm is able to estimate crossing or close fre-
quency trajectories which was a challenge.

In the following, we consider the case I for a statistical
parameter study. The solid line denotes the CRB. In Fig.4,
the performance estimation of frequency parameter fi,0 and
amplitude parameter ai,0 are reported. Fig.4 shows that the
MSE on the variance of parameter estimation is close to the
CRB. Similar results are obtained for the other parameters.
This highlights the performances of the proposed method in
noisy environnement.
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Figure 4: Estimation performance of amplitude and frequency pa-
rameters. The MSE of parameter estimation ( dashed line) versus
the CRB (solid line).

6. CONCLUSION

In this paper, the estimation of nonstationary multicompo-
nent signals is adressed. The frequency and the amplitude
are both nonlinear time-varying functions. Based on a pre-
vious published technique, whose efficiency was proved for
monocomponent signals, we present an iterative algorithm
to estimate multicomponent signals. Each component is re-
constructed using a Maximum Likelihood procedure solved
by a Simulated Annealing technique. This technique is a
compromise between optimality and computation complex-
ity. Monte Carlo simulations are compared to the appropriate
CRB. It is shown that the estimation is closed to the CRB,
even if crossing frequency trajectories occur. After studying
signals in contiguous short segments, we aim now to merge
all processed segments in order to reconstruct the entire mod-
ulations. This will provides a robust way to estimate any
class of nonstationary signals.
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