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ABSTRACT
This work focuses on solving the problem of Blind Source
Separation (BSS) using Independent Component Analysis
(ICA) method for nonlinear mixtures. Since ICA methods
require a dependence measure, we will investigate the use of
mutual information and quadratic dependence. Mutual infor-
mation has already often been used for solving BSS prob-
lem, but difficulties occur in order to carry out an asymp-
totic study. In contrast, the quadratic dependence was intro-
duced recently and has already been used for independence
tests. Finally, the difficulty of solving the BSS problem is
illustrated through examples of the shape of the objective-
functions.

1. INTRODUCTION

Blind source separation (BSS) consists in extracting inde-
pendent sources from their mixtures without relying on spe-
cific assumptions about the mixture and the sources distribu-
tion other than their independence. Therefore most methods
which have been proposed are based on minimizing some
criterion related to independence. Such criterion often pos-
sesses the contrast property in the sense that it can be mini-
mized if and only if the outputs of the separation system are
mutually independent [7, 11]. In the context of linear mix-
tures, contrast functions can be constructed from cumulants
[7] or even correlations if lagged correlations are included
[13]. This is possible because of the strong constraint of lin-
earity of the mixture, since it is well known that the indepen-
dence between a set of random variables cannot in general
be inferred from the fact that some of their correlations and
cumulants are zero. (One needs to consider all of them.) In
the nonlinear mixtures problem, it is therefore of interest to
consider dependence measures which completely character-
izes independence, in the sense that the measure can be zero
if and only if independence has been achieved. Of course,
such measure can be of interest in the linear mixture context
too.

The mutual information is a well known and widely used
dependence measure. Its use in nonlinear BSS has been
introduced in Taleb and Jutten [12] and Babaie-Zadeh [5],
among others. This measure is however difficult to estimate,
as it involves the estimation of entropy which requires den-
sity estimation. This can cause severe difficulty for high di-
mensional data. Although it is possible to reduce a criterion
based on mutual information to the one based only on the
marginal entropies, this approach can lead to large bias due
to bias in density estimation. For these reasons, it could be of
interest to consider other dependence measures. Such a mea-

sure is considered in Achard et al. [3] called the quadratic
dependence measure. Thanks to simple computation and the
possibility to carry out an asymptotic study, the quadratic de-
pendence allows us to better characterize the behaviour of the
estimators and the solution of the BSS problem.

In this paper, we compare the two dependence measures,
the mutual information and the quadratic dependence. First
from a statistical point of view, we show the good proper-
ties of the quadratic dependence in contrast of the difficulty
to carry out an asymptotic study for the mutual information.
Then, some examples of the shape of the objective-functions
in the context of a linear mixture and nonlinear mixture are
described, which show the difficulty to apply a minimization
method due to the estimation problem but also to the com-
plexity of the mixture.

Section 2 shows the statistical properties of the estimators
of the mutual information and quadratic dependence. This
results in a detailled comparison between the two depen-
dence measures in terms of asymptotic behaviour of their es-
timators. Section 3 exhibits examples of the landscape of the
objective-functions which have to be minimized. Especially,
we note an important increasing in complexity for solving
the problem of BSS in the context of a post nonlinear mix-
ture.

The post nonlinear model
Let us recall the definition of a post nonlinear mixture:

the observed signals X1, . . . , XK are related to the sources
S1, . . . ,SK through the relations

Xi = fi(
K

å
k=1

AikSk), i = 1, . . . ,K

where Aik denotes the ik-th entry of the mixing matrix A and
f1, . . . , fK are nonlinear functions. It is assumed that there is
the same number K of sources and observations, the matrix
A is invertible and the functions fi are monotonous, so that
the sources can be recovered from the observations, if one
knows A and f1, . . . , fK .

The blind source separation problem consists in finding
a matrix B and K applications g1, . . . ,gK so that the random
variables, i = 1, . . . ,K, Yi = å K

k=1 BikZk, where Zk = gk(Xk),
which represent the reconstructed sources, are independent.
Indeed, it has been shown [5, 2] that the independence of the
output Y1, . . . ,YK , implies Yi = a iSs (i) (where s (i) is a per-
mutation over {1,2, . . . ,K} and a 1, . . . , a K are scale factors),
i.e. source separation is achieved with scale and permutation
indeterminacies, as for linear mixtures.



In the following, let us denote X(1), . . . ,X(N) a sample
of X = (X1, . . . ,XK)T of size N and for all i = 1, . . . ,N and
k = 1, . . . ,K, Zk(i) = gk(Xk(i)) and Yk(i) = å K

j=1 Bk jZ j(i).

2. DEPENDENCE MEASURES

2.1 Mutual Information

As a measure of dependence, let us consider the mutual in-
formation of the random variables Y1, . . . ,YK : I(Y1, . . . ,YK) =

å K
i=1 H(Yi) − H(Y1, . . . ,YK), where H denotes the entropy,

H(X) = −E[log(pX(X))], pX is the density function of X .
As already shown in [10], the mutual information is al-

ways positive and is equal to zero if and only if the random
variables Y1, . . . ,YK are independent. Thus, I(Y1, . . . ,YK) can
be used as a criterion for blind source separation.

The estimation of the mutual information however in-
volves estimators of both the marginal and the joint entropies
which in turn requires the estimations of marginal and joint
densities. Especially, joint density estimation in a high di-
mensional space is difficult, because of the “curse of dimen-
sion”. Usually, for overcoming this problem, the estimation
of joint entropy and hence that of joint density, is avoided by
expressing the joint entropy of the reconstructed sources as
the sum of the observation joint entropy and of the expected
Jacobian of the separating system (see equation 1). For a lin-
ear mixture, this trick leads to algorithms easy to implement,
based on minimization of the mutual information [11, 6].

However for post nonlinear (PNL) mixtures, the above
method introduced some bias in estimating the reduced cri-
terion and therefore, it might be preferable to consider a cri-
terion based directly on the mutual information. For a post
nonlinear mixture, Taleb and Jutten [12] suggest to transform
the above mutual information so as to keep only terms with
marginal entropy. They obtain the reduced criterion:

C(Y1, . . . ,YK) =
K

å
i=1

H(Yi)−
K

å
i=1

H(Zi)− log |detB|. (1)

Since the mutual information between Z1, . . . ,ZK is equal
to that between X1, . . . ,XK , it can be seen that,

I(Y1, . . . ,YK) = C(Y1, . . . ,YK)+ I(X1, . . . ,XK). (2)

As I(X1, . . . ,XK) is a constant, the minimum of C(Y1, . . . ,YK)
is the same as the one of I(Y1, . . . ,YK).

The above criteria I(Y1, . . . ,YK) and C(Y1, . . . ,YK) are the-
oretical criteria, in practice one has to estimate them. For the
estimation of these two criteria, we will simply use an esti-
mation of entropy defined as:

Ĥ(Y) =
1
N

N

å
n=1

log p̂
Y

( Y(n)) (3)

and p̂
Y

is a kernel estimation of density.
But, as shown in [4], the estimators Î and Ĉ do not sat-

isfy anymore the relation (2). Indeed, the kernel-density es-
timator does not satisfy the well-known relation between a
density and a transformed density:

pg(X)
(y) =

pX(g−1(y))
|g′(g−1(y))|

where g is any continuously differentiable invertible function
and X is any random vector admitting a density.

As a result, the minimum of Ĉ does not correspond to the
minimum of Î. This difference leads to different minimiza-
tion algorithms.

We notice also, see [4] for a proof, that if the variables
Y1, . . . ,YK are independent, the main difference between the
bias of Ĉ and Î is its limit when N tends to infinity. Indeed,
we notice that when N tends to infinity, the bias of Ĉ tends to
zero only if h tends to zero (with a sufficient low rate), while
the bias of Î tends to zero when N tends to infinity even for
fixed h. This suggest to use Î rather than Ĉ, so that the con-
vergence does not depend on the choice of h. It also explains
the efficiency of even simple histograms estimates [5] and
the robustness concerning the choice of h in the kernel.

2.2 Quadratic dependence

2.2.1 Definition

Let us first recall the definition of the quadratic dependence
as defined in [3].

Definition 2.1 Let K be a real kernel function with a posi-
tive Fourier transform, summable and different from zero al-
most everywhere. For a set of K random variables Y1, . . . ,YK ,
we define the quadratic measure of their (mutual) depen-
dence as
Q(Y1, . . . ,YK) =

1
2

{
E [p

Y
(Y)]+

K

Õ
k=1

E
[
p Yk

(Yk)
]
−2E

[
K

Õ
k=1

p Yk
(Yk)

}]

where p
Y

(y) = E

[
K

Õ
i=1

K

(
yi −Yi(n)

ŝ Yi

)]

p Yk
(yk) = E

[
K

(
yk −Yk(n)

ŝ Yk

)]
.

and s Yk
is a scale factor, that is a positive functional of the

distribution of Yk such that s l Yi
= |l |s Yk

, for all real constant

l .

This dependence measure is called a quadratic dependence
because it can be written in terms of an integral of the square
difference between the joint and marginal characteristic func-
tions, weighted by the Fourier transform of the kernel.

Thus we have at our disposal a whole class of quadratic
measures, depending on the choice of the kernel K and also
on the bandwidth h if we choose the kernel to be a scaled
kernel of the form ˜K (·/h)/h. Let us stress that the kernel K
does not need to be a density, and h does not need to be very
small. Thus we have a lot of degrees of freedom in choosing
them. Since we do not know how these choices will affect
the performance of the method, we will have to choose them
in an ad hoc manner. Due to the large degree of freedom
in the choice of the kernel, the estimation of the quadratic
dependence will be more robust in terms of the choice of the
kernel and the bandwidth.

2.2.2 Estimation

As the dependence measure Q involves only the expectation
operator E . Thus a natural estimator of Q can be obtained



by just replacing this operator with the sample average Ê ,
defined as Ê f (X) = å N

n=1 f (X(n))/N, where f is any func-
tion of the data.

2.2.3 Asymptotic properties

• Law under the hypothesis of independence (denoted H0):

This result is due to Kankainen [9]. The estimator NQ̂
follows a law of g c 2(b ) where g and b are defined as,
g = V1/2E1 and b = 2E2

1/V1, where E1 is the mean of Q̂
under H0,and V1 is the variance of Q̂ under H0.
• Law under the hypothesis of dependence (denoted H1):
The derivation of the law of the estimator of the quadratic
dependence comes form results about U-statistics, [8, 9].√

N(Q̂ − Q) follows asymptotically a normal law with 0
mean and s 2 variance, where s 2 is,

s 2 = S 11 −4S 12 + 2S 13−4S 23 + 4S 22 + S 33

with S the variance-covariance matrix of the corresponding
U-statistics dependent on K and h. Due to the lack of space,
the reader is invited to refer to [1] for the exact formulas of
the variances under each hypotheses.

These results allow us to propose a solution of the choice
of the optimal bandwidth given a particular kernel. In the
sequel, we will focus on two different kernels, the Gaussian
kernel: K (x) = e−x2

and the second derivative of the square
Cauchy kernel: K (x) = −(20x2 −4)/(1 + x2)4 Figure 1 (a)
illustrates the behaviour of the size of the confidence inter-
vals in terms of the bandwitdh with two different kernels. x
is the solution of the equation: P(−x ≤ Q̂−Q ≤ x) = 0.95.
Clearly, we observe that it is worthwhile to use a large band-
width in order to get a very small variance. But with a
large bandwidth, the power of the independence test can be
very low, as described by the following figure 1 (b). In
figure 1 (b), for the computation of p, we first compute
qa such that PH0

(Q̂ > qa ) = a , with a = 0.95 and then,

p = 1−PH1
(Q̂ < qa ).

In conclusion, we have to choose the bandwith in order
to have a small variability but also in order to keep a high
power for the independence test. The possibility to construct
an independence test is also very interesting in the sense that
we will be able to control the gradient descent method in the
minimization process. Indeed, this allows us to recognize a
local minimum from a global minimum, and to propose an
efficient criteria to control the convergence of the algorithm.

3. ILLUSTRATIONS

In this section, our objective is to illustrate what kind of dif-
ficulties may appear in the research of the minimum of the
objective-functions like the quadratic dependence or the mu-
tual information.

3.1 Linear mixtures

Figure 2 represents the landscape of the quadratic depen-
dence in a simple example of a linear mixture with two
sources S = (S1,S2)

T : X = AS, with A a rotation matrix
of angle p /8. Then the separation structure is defined by:
Y1 = X1 + aX2, Y2 = bX1 + X2. In this context, it is possible
to show that the initialization point of the minimization does
not affect the convergence of the algorithm [1].
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-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5

2x

h

 
Gaussian

 
Cauchy Derivative

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7

p

h

 
Gaussian

 
Cauchy Derivative

Figure 1: (a) Size of the confidence intervals and (b) power
of the independence test in terms of the bandwidth using two
different kernels

3.2 Post nonlinear mixtures

In the case of a post nonlinear mixture, some difficulties
appear because of the existence of some local minima and
the performance of the estimation. The landscape of the
quadratic dependence given in figure 3 shows the complex-
ity of the minimization in a simple example of a post non-
linear mixture with two sources S = (S1,S2)

T , a rotation
matrix A with angle p /8 and only one nonlinear function,
f1,l (x) = sign(x)

2l (−1+
√

1 + 4l |x|), l = 3. Then the separa-
tion structure is defined by, a rotation matrix B with angle q
and two functions g1,l (x) = x + l x|x| and g2(x) = x. In this
simple example, we observe that the choice of the initializa-
tion point for the minimization can be crucial, because of the
existence of local minima.

Finally, figure 4 is a representation, in a logarithm scale,
of figure 3 around the global minima, using a small band-
width. The small oscillations observed on figure 4 are close
to the global true minimum. This shows how the choice of
the bandwidth can improve the accuracy of the method.

4. CONCLUSION

The study of different dependence measures is crucial in the
improvments of ICA methods, especially to solve the BSS
problem for nonlinear mixtures. In contrast to the mutual in-
formation, the quadratic dependence measure is easy to im-
plement even for nonlinear mixtures. And due to the possi-
bility to carry out an asymptotic study, it is possible to pro-
pose efficient control for the minimization algorithm. Further
works will consist in characterizing precisely the behaviour



Figure 2: Representation of the estimator of the quadratic
dependence measure with a Gaussian kernel and h = 0.5 in
terms of a and b. P0 and P1 denote the global minima.

of the estimation of the solution of the BSS problem in terms
of the parameters used in the definition of the quadratic de-
pendence.
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Figure 3: Representation of the estimator of the quadratic
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Figure 4: Representation of the logarithm of the estimator of
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Cauchy kernel and h = 0.5 in terms of q and l
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