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ABSTRACT
In this paper, we propose an estimation technique for rapidly
time-varying channels. We approximate the time-varying
channel using the basis expansion model (BEM). The BEM
coefficients of the channel are needed to design channel equal-
izers. We rely on pilot symbol assisted modulation (PSAM)
to estimate the channel (or the BEM coefficients of the chan-
nel). We first derive the optimal minimum mean-square error
(MMSE) interpolation based channel estimation technique.
We then derive the BEM channel estimation, where only the
BEM coefficients are estimated. We consider a BEM with a
critically sampled Doppler spectrum, as well as a BEM with
an oversampled Doppler spectrum. It has been shown that,
while the first suffers from an error floor due to a model-
ing error, the latter is sensitive to noise. A robust channel
estimation can then be obtained by combining the MMSE in-
terpolation based channel estimation and the BEM channel
estimation technique. Through computer simulations, it is
shown that the resulting algorithm provides a significant gain
when an oversampled Doppler spectrum is used (an oversam-
pling rate equal to 2 appears to be sufficient), while only a
slight improvement is obtained when the critically sampled
Doppler spectrum is used.

1. INTRODUCTION

Communication systems are currently designed to provide
high data rates to high mobility terminals. High mobil-
ity and/or frequency offsets between the transmitter and
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the receiver result into rapidly time-varying channels. Such
channels have a coherence time in the order of the sym-
bol period, and thus cannot be considered time-invariant.
Many equalization techniques have already been developed
to combat the effect of such channels. In [1, 2, 3] linear and
decision feedback equalizers have been developed for single
carrier transmission. A per-tone frequency-domain equal-
ization technique for multicarrier transmission over doubly
selective channels has been proposed in [4]. In these works,
the time-varying channel was modeled using the basis expan-
sion model (BEM). The BEM coefficients are then used to
design the equalizer (linear or decision feedback). The above
equalizers thus assume perfect knowledge of the channel at
the receiver. The BEM coefficients can be obtained by using
least squares fitting. In practice, the BEM coefficients have
to be estimated, e.g. using training. This is the focus of this
paper.

In this paper, we will rely on pilot symbol assisted modu-
lation (PSAM), which consists of inserting known pilot sym-
bols at known positions. We first derive the optimal mini-
mum mean-square error (MMSE) interpolation based chan-
nel estimation technique. Then we derive the conventional
BEM channel estimation technique. It has been shown that
the modeling error (between the true channel and the BEM
channel model) is quite high for the case when the BEM pe-
riod equals the time window [4]. This case corresponds to
a critical sampling of the Doppler spectrum. Reducing this
modeling error can be achieved by setting the BEM period
equal to a multiple of the time window. In other words, we
can reduce the modeling error by oversampling the Doppler
spectrum. In [5] the authors treated the first case ignoring
the modeling error. However, when an oversampling of the
Doppler spectrum is used, the BEM based PSAM channel
estimation is sensitive to noise. Here, we show that robust
PSAM based channel estimation can be obtained by combin-
ing the optimal MMSE interpolation based channel estima-
tion with the BEM considering an oversampling rate greater
than one (an oversampling rate equal to 2 appears to be
sufficient).

This paper is organized as follows. In Section 2, we
present the system model. In Section 3, we derive the PSAM
MMSE channel estimation. BEM channel estimation is in-
troduced in Section 4. In Section 5, we show through com-
puter simulations the performance of the proposed channel
estimation techniques. Finally, our conclusions are drawn in
Section 6.

Notations: We use upper (lower) bold face letters to de-
note matrices (column vectors). Superscripts ∗, T , H , and
† represent conjugate, transpose, Hermitian, and pseudo-
inverse, respectively. Continuous-time variables (discrete-
time) are denoted as x(·) (x[·]). E{·} denotes expectation.
Finally, we denote the N ×N identity matrix as IN .



2. SYSTEM MODEL

We assume a single-input single-output (SISO) system, but
the results can be easily extended to a single-input multiple-
output (SIMO) system or a multiple-input multiple-output
(MIMO) system. Focusing on a baseband-equivalent descrip-
tion, when transmitting a symbol sequence s[n] at rate 1/T ,
the received signal y(t) can be written as:

y(t) =
∞

X

n=−∞

g(t; t− nT )s[n] + v(t),

where g(t; τ) is the baseband-equivalent of the doubly selec-
tive channel (time- and frequency-selective) from the trans-
mitter to the receiver, v(t) is the baseband-equivalent filtered
additive noise at the receiver. g(t; τ) includes the physical
channel gch(t; τ) as well as the transmit filter gtr(t) and re-
ceive filter grec(t):

g(t; τ) =

Z ∞

−∞

Z ∞

−∞

grec(s)gtr(τ − s− θ)gch(t− s; θ)dsdθ.

Sampling the received signal at the symbol rate 1/T , the
received sample sequence y[n] = y(nT ), can be written as:

y[n] =

∞
X

ν=−∞

g[n; ν]s[n− ν] + v[n], (1)

where v[n] = v(nT ) and g[n; ν] = g(nT ; νT ).
Multipath is a common phenomenon in wireless links due

to scattering and reflection of the transmitted signal. Each
resolvable path corresponds to a superposition of a large
number of scattered rays, called a cluster, that arrive at the
receiver almost simultaneously with a common propagation
delay τc. Each of these rays within the cluster is character-
ized by its own complex gain and frequency offset. Hence,
the physical channel gch(t; τ) can be written as [6, 7]:

gch(t; τ) =
X

c

δ(τ − τc)
X

µ

Gc,µe
j2πfc,µt (2)

where Gc,µ and fc,µ are the complex gain and frequency
offset of the µth ray of the cth cluster.

Assuming the time variation of the physical channel
gch(t; τ) is negligible over the span of the receive filter grec(t)
and the transmit filter gtr(t), we obtain:

g(t; τ) =

Z ∞

−∞

„
Z ∞

−∞

grec(s)gtr(τ − s− θ)ds

«

gch(t; θ)dθ

=

Z ∞

−∞

ψ(τ − θ)gch(t; θ)dθ

=
X

c

ψ(τ − τc)
X

µ

Gc,µe
j2πfc,µt. (3)

Hence, we can express g[n; ν] as:

g[n; ν] =
X

c

ψ(νT − τc)
X

µ

Gc,µe
j2πfc,µnT . (4)

For simplicity (but without loss of generality) we will
focus on a flat fading rapidly time-varying channel, where,
only one cluster of rays is considered, i.e. c = 0 that arrives
at τ0. Then gch(t; τ) can be written as:

gch(t; τ) =
X

µ

Gµe
j2πfµtδ(τ − τ0).

For simplicity, we consider τ0 = 0. Hence, the received se-
quence can be written as:

y[n] = g[n]s[n] + v[n].

See also a comment on the generality of our approach at the
end of Section 4.

3. MMSE CHANNEL ESTIMATION

In this section we derive the minimum mean-square error
(MMSE) channel estimator. We rely on pilot-symbol as-
sisted modulation (PSAM) [8], which consists of inserting
a few known pilot symbols at know positions. Defining
st = [s[n0], s[n1], . . . , s[nP−1]]

T as the vector of the trans-
mitted known symbols, where np is the position of the pth
pilot symbol, and P is the total number of pilot symbols
inserted in a block of N symbols. A noisy estimate of the
channel is simply obtained by:

ĝt[p] =
y[np]

s[np]
= g[np] + ṽ[np], for p = 0, . . . , P − 1. (5)

where ṽ[np] = v[np]/s[np]. Define ĝt = [ĝt[0], . . . , ĝt[P−1]]T ,
which is a vector containing the noisy estimates of the chan-
nel on the pilot positions. From these noisy estimates,
we have to reconstruct the channel response for all n ∈
{0, . . . , N − 1}. In other words, we need to design a P ×N
interpolation matrix W such that:

ĝ = W
H
ĝt, (6)

where ĝ = [ĝ[0], . . . , ĝ[N − 1]]T is the channel estimate. The
mean square-error (MSE) can be written as:

ǫ =
1

N

N−1
X

n=0

E{|ĝ[n] − g[n]|2}

=
1

N
E{‖WH

ĝt − g‖2} (7)

The minimum mean-square error (MMSE) interpolation ma-
trix W is obtained by solving:

min
W

ǫ

The solution of this problem is obtained as follows:

W = (Rp + Rṽ)−1
Rh (8)

where Rp is the channel correlation matrix on the pilots
given by:

Rp =

2

6

6

6

4

rh[0] · · · rh[nP−1 − n0]
rh[n1] · · · rh[nP−1 − n1]

...
. . .

...
rh[nP−1] · · · rh[0]

3

7

7

7

5

,

and Rh is given by:

Rh =

2

6

6

6

4

rh[n0] · · · rh[N − n0 − 1]
rh[n1] · · · rh[N − n1 − 1]

...
. . .

...
rh[nP−1] · · · rh[N − nP−1 − 1]

3

7

7

7

5

,

with rh[k] = E{g[n]g∗[n − |k|]}. Rṽ is the noise correla-
tion matrix. Both Rp and Rh are assumed to be known.
Note that we used the assumption that the channel is wide
sense stationary (WSS). Assuming independent identically
distributed (i.i.d) input symbols s[n] with variance σ2

s , and
white noise with variance σ2

v, then Rṽ = βIP , where β =
σ2

v/σ
2
s .



4. BEM CHANNEL ESTIMATION

The channel model in (4) has a rather complex structure due
to the large (possibly infinite) number of parameters to be
identified, which complicates, if not prevents, the develop-
ment of low complexity equalizers. This motivates the use of
alternative models, which have fewer number of parameters.
This is the motivation behind the Basis Expansion Model
(BEM) [9, 10, 11]. In this BEM, the time-varying channel
g[n] over a window of N samples, is expressed as a superposi-
tion of complex exponential basis functions with frequencies
on a discrete grid. In other words, the time-varying channel
g[n] is modeled for n ∈ {0, · · · , N − 1} by a BEM:

h[n] =

Q/2
X

q=−Q/2

hqe
j2πqn/K , (9)

where Q is the number of basis functions, and K is the BEM
period. Q and K should be chosen such that Q/(KT ) is
larger than the maximum Doppler frequency, i.e. Q/(KT ) ≥
fmax. hq is the coefficient of the qth basis function of the
channel, which is kept invariant over a period of NT , but
may change from block to block. In earlier work on equaliza-
tion of doubly selective channels [1, 2, 3], the time-invariant
coefficients of the BEM channel model are required to design
the equalizer. Define hb = [h−Q/2, . . . , hQ/2]

T as a vector
containing the channel BEM coefficients. In the ideal case,
where the time-varying channel g = [g[0], . . . , g[N − 1]]T is
perfectly known at the receiver ∀n ∈ {0, . . . , N − 1}, the
channel BEM coefficients can be obtained by solving the fol-
lowing least squares (LS) problem:

min
hb

‖g − Lhb‖
2, (10)

where

L =

2

6

6

6

4

1 . . . 1

e−j2πQ/2/K . . . ej2πQ/2/K

...
...

e−j2πQ/2(N−1)/K . . . ej2πQ/2(N−1)/K

3

7

7

7

5

.

The solution of (10) is given by:

hb = L
†
g.

In practice, only a few pilots are available for channel
estimation. Assuming the noisy estimates are obtained as in
(5), then the channel BEM coefficients can be obtained by
solving the following LS problem:

min
hb

‖ĝt − L̃hb‖
2, (11)

where

L̃ =

2

6

4

e−j2πQ/2n0/K . . . ej2πQ/2n0/K

...
...

e−j2πQ/2nP−1/K . . . ej2πQ/2nP−1/K

3

7

5
.

The solution of (11) is obtained by:

hb = L̃
†
ĝt (12)

It has been shown in [5], that for the case of a criti-
cal sampling of the Doppler spectrum (K = N), the opti-
mal training strategy consists of inserting equipowered, eq-
uispaced pilot symbols. However, critical sampling of the

Doppler spectrum results into an error floor due to the
high modeling error. On the other hand, oversampling the
Doppler spectrum (K = rN , with r integer r > 1) reduces
the modeling error when the ideal case is considered [4], i.e.
when (10) is applied. However, this channel estimate is sen-
sitive to noise when PSAM channel estimation is used.

A robust channel estimate can then be obtained by com-
bining the optimal MMSE interpolation based channel es-
timate obtained in (6) with the BEM channel estimate ob-
tained in (10) as follows:

• First, obtain the channel estimate ĝ as in (6).
• Second, obtain the LS solution of the following problem:

min
hb

‖ĝ − Lhb‖
2, (13)

The solution of (13) can be obtained as:

hb = L
†
ĝ, (14)

or equivalently in one step as:

hb = L
†
W

H
ĝp. (15)

Even though this applies to both critical sampling and the
oversampling case, little gain is obtained when combining
the MMSE interpolation based channel estimate with the
critically sampled BEM (K = N), as will be clear in Section
5.

In our discussion so far, we considered a time-selective
channel. Extending this to a doubly selective channel of or-
der L is rather straightforward when applying the optimal
training strategy that consists of equipowered equispaced pi-
lot symbols surrounded by L zeros on each side [5]. Doing
this, enables us to treat each tap separately.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed channel estimation techniques. We consider a rapidly
time-varying channel simulated according to Jakes’ model
with fmax = 1/(400T ) = 250 Hz, where the sampling time
T = 10µsec. The channel autocorrelation function is given
by rh[k] = σ2

hJ0(2πfmaxkT ), where J0 is the zero-th order
Bessel function and σ2

h denotes the variance of the channel.
We consider a window length of N = 800 symbols. For the
BEM, we consider the critically sampled Doppler spectrum
K = N , as well as the oversampled Doppler spectrum with
oversampling rate 2 (K = 2N). The number of basis func-
tions is therefore chosen to be Q = 4 for the critical sampling
case, and Q = 8 for the oversampling case. We use PSAM
to estimate the channel. We consider equipowered and equi-
spaced pilot symbols with M the spacing between the pilots.
The number of pilots is then computed as P = ⌊N/M⌋+ 1.

First, we consider the normalized channel MSE versus
SNR. We evaluate the performance of the different estima-
tion techniques, in particular, BEM with K = N , combined
BEM and MMSE with K = N , BEM with K = 2N , com-
bined BEM and MMSE with K = 2N , and the MMSE chan-
nel estimate. We consider the case when the spacing between
pilot symbols is 160 which corresponds to P = 5 pilot sym-
bols dedicated for channel estimation. This choice is well
suited for the case of K = N , where the number of BEM co-
efficients to be estimated is Q+ 1. As shown in Figure 1, all
the MSE channel estimates suffer from an early error floor.
However, combining the critically sampled BEM with the
MMSE results into slight better performance. We further
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Figure 1: MSE vs. SNR for P = 5, M = 160
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Figure 2: MSE vs. SNR for P = 9, M = 95

consider the case when the spacing between pilot symbols is
M = 95 which corresponds to P = 9 pilot symbols dedicated
for channel estimation. This case is well suited for the case
when K = 2N . As shown in Figure 2, the performance of
BEM with K = N suffers from an early error floor, which
means that increasing the number of pilot symbols does not
enhance the channel estimation technique. Whilst for the
case when K = 2N , the MSE curves do not suffer from an
early error floor. However, the oversampled BEM channel
estimate is sensitive to noise. A significant improvement is
obtained when the combined BEM and MMSE method is
used, where a gain of 9 dB at MSE = 10−2 is obtained
over the conventional BEM method, when the oversampling
rate is 2. Note also that, the performance of the combined
BEM and MMSE method when K = 2N coincides with the
performance of the MMSE only.

Second, the estimated channel BEM coefficients are used
to design a time-varying (TV) FIR equalizer. We consider
here a single-input multiple-output (SIMO) system with
Nr = 2 receive antennas. The channel is considered to be
doubly selective with order L = 3. The TV FIR equalizer
is designed to have order L′ = 12 and number of TV basis
functions Q′ = 12. We use the minimum mean-square error
(MMSE) criterion to design the TV FIR filter (see [2]):

w
T = e

T
d (HH

H + SNR−1
I(Q+Q′+1)(L+L′+1))

−1
H

H (16)
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Figure 3: BER vs. SNR using MMSE TV FIR linear equal-
izer.
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Figure 4: BER vs. SNR using the MMSE TV FIR DFE.

where w is a vector contains the TV FIR equalizer BEM
coefficients, ed is a (Q+Q′ + 1)(L+ L′ + 1) × 1 unit vector
with the 1 in the (d(Q+Q′ +1)+(Q+Q′)/2+1)st position,

d is the decision delay chosen as: d = ⌊L+L′

2
⌋ + 1, and H

is a Nr(Q
′ + 1)(L′ + 1) × (Q + Q′ + 1)(L + L′ + 1) matrix

containing the doubly selective channel BEM coefficients (as
obtained by the different scenarios). The BEM resolution of
the TV FIR equalizer matches that of the channel. QPSK
signaling is assumed. We define the SNR as SNR = σ2

h(L+
1)Es/σ

2
v, where Es is the QPSK symbol power. As shown

in Figure 3, the BER curve experiences an error floor when
M = 165 for the different scenarios. For the case of M =
95, we experience an SNR loss of 11.5 dB for the case of
K = 2N compared to the case when perfect channel state
information (CSI) is known at BER = 10−2, while the SNR
loss is reduced to 6 dB for the case of combined BEM and
MMSE when K = 2N . For K = N , both cases (BEM and
combined BEM and MMSE) suffer from an error floor. We
also consider MMSE decision feedback equalization (DFE) as
explained in [3]. For the case of MMSE TV FIR DFE, the
TV FIR feedforward filter is designed to have order L′ = 12
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Figure 5: MSE vs. fmax for P = 5, M = 160, and SNR =
25 dB
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Figure 6: MSE vs. fmax for P = 9, M = 95, and SNR =
25 dB

and number of TV basis functions Q′ = 12, and the TV FIR
feedback filter to have order L′′ = L and Q′′ = Q. The
results are shown in Figure 4. Similar observations to the
MMSE TV FIR linear equalizer can be generally observed
for the MMSE TV FIR DFE.

Finally, we measure the MSE of the channel estimation
techniques as a function of the maximum Doppler frequency.
We design the system to have a maximum target Doppler fre-
quency of fmax = 1/(400T ) = 250 Hz. We then examine the
performance of the channel estimation techniques for differ-
ent maximum Doppler frequencies at a fixed signal to noise
ratio SNR = 25 dB. The results are shown in Figure 5 for
the case when P = 5 pilot symbols are used for channel es-
timation, and Figure 6 when P = 9 pilot symbols are used.
For either case, the channel estimation techniques maintain a
low MSE channel estimate as long as the channel maximum
Doppler frequency is less than the target maximum Doppler
frequency.

6. CONCLUSIONS

In this paper, we have proposed a channel parameters esti-
mation technique for rapidly time-varying channels derived

from an interpolation based MMSE estimation scheme. We
use the BEM to approximate the time-varying channel. Us-
ing the BEM, we only require to estimate the time-invariant
coefficients. We rely on PSAM to estimate the channel. We
consider the case when the Doppler spectrum is critically
sampled (K = N) and when it is oversampled (K is mul-
tiple of N). While in the first case, the estimation scheme
suffers from an early error floor due to the large modeling
error, the estimation is sensitive to noise in the oversampled
case. It has been shown through computer simulations that
combining the MMSE interpolation based channel estimate
with the oversampled BEM significantly improves the chan-
nel estimation.
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