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ABSTRACT
To fully exploit the capabilities of satellite-borne multi/-
hyperspectral sensors, some form of image compression is
required. The Gelli-Poggi coder [1], based on segmenta-
tion and class-based transform coding, has a very competitive
performance, but requires some a-priori knowledge which is
not available on-board. In this paper we propose a new ver-
sion of the Gelli-Poggi coder which is fully unsupervised,
and therefore suited for use on-board a satellite, and presents
a better performance than the original. Numerical exper-
iments on test multispectral images validate the proposed
technique.

Key-words: Multispectral image coding, region-based cod-
ing, on-board implementation.

1. INTRODUCTION

The performance of satellite-borne sensors increases ever
more in terms of spatial resolution, radiometric accuracy, and
number of spectral bands. All these aspects, and especially
the latter, contribute to increase the data volume that such
sensors must transmit to the ground station, to the point that
the required data rate largely exceeds the available channel
capacity and large chunks of data must be simply discarded.
To avoid this loss one can resort to data compression which
allows one to reduce the data volume by one/two orders of
magnitude without serious effects on the image quality and
on their diagnostic value for subsequent automatic process-
ing. To this end, however, one cannot resort to general pur-
pose techniques as they do not exploit the peculiar features
of multispectral remote-sensing images, and in fact several
ad hoc coding schemes have been proposed in recent years,
e.g., [1-4].

One of the most promising such schemes, based on clas-
sified transform coding, is the Gelli-Poggi coder, originally
proposed in [1]. The image is first segmented, so that each
pixel is associated with one of a given number of classes
based on its spectral response vector. Then, all vectors of the
same class are grouped together and compressed by means
of transform coding techniques. This way, transform coding
operates on stationary homogeneous sources, thereby maxi-
mizing its efficiency, and leading to an excellent overall rate-
distortion performance, which is in fact superior to that of
other state-of-the-art coders.

The Gelli-Poggi coder, however, relies heavily on a-priori
information which is hardly available to both encoder and
decoder, and makes the coder unsuited for compression on-
board a satellite before transmission to the ground station.
In this paper we address this problem, by suitably modify-
ing the various steps of the original coder in order to ob-
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Figure 1: Block diagram of the coding scheme.

tain more practical coding schemes suited for on-board op-
erations. Next Section describes the Gelli-Poggi coder in
detail, highlighting its weak points. Section 3 presents the
various improvements proposed and Section 4 assesses the
performance of the various alternative schemes by means of
numerical experiments on test multispectral images. Finally
Section 5 draws conclusions.

2. THE GELLI-POGGI CODER

The coding scheme comprises three main steps (see Fig.1):
1. image segmentation;
2. lossless coding of the segmentation map;
3. lossy coding of the radiometric information.
The original scheme is fully supervised, meaning that all sta-
tistical parameters are computed in advance on a training-set.
Let us describe these three steps in some more detail.

Segmentation amounts to a simple spectral clustering.
Specifically, each pixel is classified by computing the Eu-
clidean distances between its spectral vector and a set of tem-
plate vectors, one for each class, and assigning the pixel to
the minimum-distance class. The set of template vectors can
be viewed as a VQ codebook, computed off-line on a suitable
training set, and the segmentation itself as a vector quantiza-
tion. In particular, to limit computation complexity, the VQ
codebook is tree-structured so that only a few binary com-
parisons are needed.



The map of class indexes must be sent to the decoder
as a side information. Since neighboring pixels are highly
correlated the map is significantly compressed, without loss
of information, by resorting to a predictive scheme followed
by Huffman coding, with the code computed on the training
set as well.

Using the selected template vectors for every pixel in-
stead of the original spectral vectors, we have a first VQ ap-
proximation of the multispectral image. The difference be-
tween the original image and the VQ approximation is the
residual image, which is compressed by means of transform
coding. First, a classified Karhunen-Loeve Transform (KLT)
is performed along the spectral dimension. In order to ac-
count for class information, a different transformation ma-
trix for each class is derived off-line from the training-set.
Then, a Discrete Cosine Transform (DCT) is used to decor-
relate the spatial information within each transformed band.
Finally, each transform coefficient is sorted by spectral class,
KLT band and DCT frequency, and is included in a quan-
tization set which is quantized by a specific tree-structured
Lloyd-Max quantizer designed off-line on the training set.
Rate allocation is decided on-line with a greedy bit alloca-
tion algorithm.

3. THE UNSUPERVISED VERSION

The obvious weakness of the original Gelli-Poggi coder in
view of on-board implementation is that several pieces of in-
formation are supposed to be known in advance, that is
• the VQ classifier;
• the class-adapted KLT matrices;
• the set-adaptive Lloyd-Max quantizers.

We will therefore abandon this hypotheses and consider an
alternative coding scheme in which all needed parameters are
designed on-line based on the very same data to be encoded.
Of course, with respect to the original scheme, this entails
an increase in computational complexity, an increase in the
side information to be transmitted along with the quantized
coefficients and, on the pros side, a different and possibly
superior compression ability, since all parameters are now
tuned on the data. We will examine the new steps in turn
under these points of view.

3.1 The VQ classifier
The design of a VQ codebook can be very demanding in
terms of CPU power but, since only a limited number of land
covers are typically present in a given image, we are inter-
ested in a rather small codebook (e.g., 4 to 20 classes [5]),
which largely reduces computation time. In addition, our
codebook is tree-structured, which further reduces both de-
sign and segmentation complexity. Finally, the design needs
not be carried out on all the data to be encoded, but only on
a sample subset, which can be as small as a few thousands
spectral vectors, although extreme subsampling can produce
some performance losses. All in all, computational complex-
ity is likely not an issue for the VQ classifier.

As for the side information, the VQ codebook for C
classes is composed of C vectors, with B components each
if B is the number of bands in the image. For images in the
order of 1 Mpixel, and coding rates not unreasonably small,
this cost is always negligible, even when 16 bits are spent to
encode each vector.

On the contrary, a good codebook designed on-line can
be significantly superior to its off-line counterpart, since in
the latter case the training set is not guaranteed to fit well the
actual data, so we can expect some performance gain here.

3.2 The class-adapted KLT matrices
To compute a KL transform matrix, we must first estimate
the B×B correlation matrix of the data, and then compute its
eigenvectors. Since we use class-adaptive KLT, we need C
such matrices, one for each class.

The estimation part is not extremely demanding, espe-
cially if we resort again (with due care) to some subsampling
of the training data. Computing the eigenvectors, instead, has
a computational complexity which grows as the third power
of the number of bands, and therefore can become a problem
if B is very large. In this case the image can be segmented
spectrally in smaller groups of bands without significant loss
of performance, also because precision could be an issue for
matrices that large. On the other hand, if B is large, almost all
of the image energy is compacted in the first few transform
coefficients, to the point that the less significant coefficients
are assigned no bits at all. This suggests us to resort to low-
complexity iterative techniques, such as the power method,
to compute the B′ most relevant eigenvectors which com-
prise almost all the energy (say, 99.9%). This condition can
be tested on-the-fly, and helps limiting complexity in critical
cases.

Concerning the side information, for each KLT matrix
we must send B× (B + 1)/2 parameters in the conventional
case, and approximately B′×B coefficient in the reduced di-
mensionality version. In some non-typical conditions (small
images, very low coding rates, many classes, many bands)
this could become significant and some care must be taken
to encode all parameters with as few bits as possible, without
significant performance losses.

Again, barring the case of a poor subsampling of the
data, using matrices computed on-line cannot but improve
the compression performance.

3.3 The set-adaptive quantizers
The problem, here, is that a very large number of quantiz-
ers are needed, C×B×K in the most general case, with K
the DCT vector length. In fact, an ad hoc quantizer is used
for the first DCT coefficient of the first KLT band of the first
class, another one for the second DCT coefficient of the first
KLT band of the first class, and so on. Even considering that
most of these sets of coefficients will be assigned no encod-
ing bits, and no information needs be transmitted for them,
so many quantizers remain to be designed and transmitted
that this approach becomes clearly unreasonable. We resort
therefore to parametric quantizers: each set of coefficients
is modeled as a zero-mean generalized Gaussian, character-
ized by its variance and shape parameters, which univocally
identify the optimal quantizer. To preserve the scalability of
the original scheme however, we designed embedded quan-
tizers and we made them mid-tread to increase robustness,
so that the tree structure has, at every depth level, one ternary
node besides the binary ones. The coefficient variances are
then used to perform rate allocation by means of the Huang-
Schultheiss algorithm [5].

With the new quantization scheme, the computational
burden increases very little, because only synthetic statistics



Figure 2: Band 5 of the test image.

must be computed for the data. Two pieces of side informa-
tion must to be sent: the active/inactive bits for each set, and
the pdf parameters for the active sets only, which should be
quite limited as well.

In terms of performance, parametric quantizers do not
guarantee in theory the same accuracy of the optimal Lloyd-
Max, but the design on actual data might even offset this the-
oretical disadvantage.

4. EXPERIMENTAL ANALYSIS

All experiments presented here are carried out on a multi-
spectral image acquired by the LANDSAT sensor (882x448
pixels, 8 bit/pixel, 6 bands) which portrays an agricultural
area in Italy near the river Po. A sample band of the test
image is shown in Fig.2.

Preliminarily we analyze the absolute performance of the
original Gelli-Poggi coder by comparing it with two state-of-
the-art coders, one based on 3d-wavelet transform followed
by 3d-SPIHT [3], and the other based on spectral KLT fol-
lowed by 2d-wavelet on the transform bands and 3d-SPIHT.

For the Gelli-Poggi coder, all needed parameters are sup-
posed to be known a-priori and are actually evaluated on a
small training section of the same LANDSAT image. The
rate-distortion curves are reported in Fig.3, and show that
the Gelli-Poggi coder always outperforms the wavelet-based
coder, and has a performance very close to that of the KLT-
wavelet one, even outperforming the latter for some values
of the bit-rates. Note that, contrary to the reference tech-
niques, very small encoding rates are not allowed, since the
first piece of information, the segmentation map, is encoded
without loss of information. However, for remote-sensing
applications such low-rates are not of interest and, in addi-
tion, the availability of an accurate segmentation map com-
puted on the uncompressed data might be a valuable side
product for many users.

We now turn to analyze the effects of the new unsuper-
vised coder on computational complexity, side information
and overall performance.

4.1 Complexity
First of all we must select the size of all training sets used in
the design phase. After a series of preliminary experiments,
we opted for a training set of 100·C vectors to design the
VQ classifier (discovering again a well-known rule of thumb)
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Figure 3: Gelli-Poggi vs. wavelet-based coders.

which guarantees a loss always within 0.1 dB with respect to
the full-size training set. Likewise, we decided to use 100
vectors per cluster to estimate the KLT matrices, for a loss
always inferior to 0.1 dB, and finally, found that 25-50 sam-
ples are more than appropriate to estimate the variance of the
quantization sets, with similarly negligible losses.

With these parameters, and considering C=20 classes and
DCT blocks of K=64 pixels, we estimated the increase in
complexity due to the on-line design in about 1.5 multiplica-
tions/pixel (m/p), almost evenly distributed among VQ, KLT
and SQ design, to be compared to about 130 m/p required
for the encoding phase. The additional cost is therefore in
the order of 1%, obviously negligible. It goes by itself that
this fraction changes with the image and coding parameters:
for example, the additional cost increases (in relative terms)
with decreasing image size, and increases with the number of
classes and especially bands. In fact, the KLT design, as said
before, becomes quite expensive for blocks of many bands
and, for example, the numbers change to about 40 m/p for
the design phase and 1800 m/p for the encoding phase if we
encode jointly 36 bands, keeping all other parameters fixed.
The design phase now costs proportionally more, about 2.5%
of the total, but the main observation is that the encoding
phase itself becomes very expensive, suggesting that such a
situation should be avoided. These results are summarized
in Fig.4, which plots the complexity of the various design
steps in log scale vs. the number of bands, compared with
the complexity of the encoding phase. We can therefore con-
clude this subsection saying that, for reasonable parameters,
the on-line design phase has a fully affordable computational
cost.

4.2 Side Information

A first piece of side information is the segmentation map,
which however was already present in the original scheme
and therefore will not be considered here. We are interested
instead in the additional costs, namely, the cost of sending
the VQ codebook, the KLT matrices, and the parameters of
the active scalar quantizers (we use Laplace quantizers and
therefore do not estimate the shape parameters). Consider-
ing the same experimental setting as before, and assuming
that all parameters are encoded to 16 bit precision (not re-
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number of bands.

ally necessary), the cost for VQ codebook is less than 0.001
bit/pixel/band (b/p/b), KLT matrices cost about 0.003 b/p/b,
and the active variances less than 0.005 b/p/b. At a coding
rate of 0.25 b/p/b, which is rather low for remote-sensing
application which require high fidelity, the side information
accounts for less than 4% of the total coding cost. Such a
cost obviously decreases when working at higher rates.

Again, it is interesting to consider the dependence on the
coding parameters, and especially on the number of bands.
Although an increase in the costs can be observed, it is not
really significant. As an example, with C=20, and B=36, the
side information requires less than 0.015 b/p/b which, at a
coding rate of 0.25 b/p/b, is just 6% of the total rate.

4.3 Encoding quality
Finally, let us consider the variation in encoding quality when
the supervised coder is used. In this case, rather than an-
alyzing the various sources of differences in performance,
which include the rate increase due to side information, the
training set subsampling, the different quality of the VQ, and
SQ codebooks and of KLT matrices, and are therefore quite
complicate to tell apart, we will examine the overall rate-
distortion performance when encoding the test image. Fig.5
compares the rate-distortion performance of the supervised
Gelli-Poggi coder (solid line) and of the new fully unsuper-
vised version (dashed line), in the experimental setting al-
ready described above. It can be seen that, despite the in-
creased cost for side information, the unsupervised case ex-
hibits a significant and increasing gain of about 1 dB w.r.t.
the unsupervised coder. The reason for this success must be
ascribed to the better quality of the codebook and of the KLT
matrices which are now designed for the data they operate on.
In particular, the scalar quantizers appear to be much better
adapted to the true statistics of the image, and responsible for
much of the performance gain

5. CONCLUSIONS

We set to implement an unsupervised version of the Gelli-
Poggi coder for multispectral images with the goal of mak-
ing it suitable for use on-board a satellite and thus reduce
the problems encountered in the transmission to the ground
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stations. Although experiments have not been extensive thus
far, they are very encouraging. Of course, the overall encod-
ing time increases, but never more than a few percents w.r.t.
the original supervised coder in the reasonable cases consid-
ered. In addition, we obtain a better rate-distortion perfor-
mance since the increase in side information is very limited
and more than compensated by the improved quality of en-
coding. Moreover, typical remote-sensing images are larger
than the 882x448 section considered here, which goes in the
direction of further reducing the cost of side information.

Experiments are under way to further improve the Gelli-
Poggi coder by using a wavelet-based coder in the spatial
domain for the coefficients produced by the classified KLT.
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