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ABSTRACT 
Using chaotic sequences for spreading is a new approach for 
optimising the BER (Bit Error Rate) performances in the 
DS-CDMA (Direct Sequence – Code Division Multiple Ac-
cess) systems. This paper presents the use of a very well 
known family of PWAM (Piece-Wise Affine Markov) maps, 
namely (n, t) – tailed shifts maps, and their optimum quan-
tized versions. This optimisation involves the variance 
minimisation for the mean MAI (Multiple Access Interfer-
ence) term, which minimises also the mean BER under the 
SGA (Standard Gaussian Approximation) condition.  

1. INTRODUCTION 

The BER (Bit Error Rate) performances of DS-CDMA (Di-
rect Sequence – Code Division Multiple Access) systems 
depend mainly on the correlation properties of the spreading 
sequences set [1], [2], [3]. The use of low cross-correlation 
sets of sequences increases the BER performances and the 
system capacity as well. Hence, it is imperative to design 
optimum spreading sequences sets that minimise the BER.  

Classical sets of spreading sequences used in actual 
standards of DS-CDMA mobile communications systems are 
binary sequences generated by LFSR (Linear-Feedback Shift 
Register) schemes. Even for minimum cross-correlation se-
quences, forming Gold and Kasami sets, the set dimension 
and the period of the sequences are limited by the LFSR 
polynomial degree. Another drawback of these sequences is 
induced by the generator linearity, which increases the inter-
ception probability. 

A new direct-sequence spreading method assumes the 
use of discrete-time non-linear dynamical systems trajecto-
ries. These systems are used to generate truly random se-
quences when working in so called “chaotic” regimes. These 
chaotic sequences present noise-like features that make them 
good for spreading in DS-CDMA systems [4], [5]. A single 
system, described by its discrete chaotic map, can generate a 
very large number of distinct chaotic sequences, each se-
quence being uniquely specified by its initial value. This de-
pendency on the initial state and the non-linear character of 
the discrete map make the DS-CDMA system using these 
sequences more secure. 

It is known that binary quantized sequences generated 
by PWAM (Piece-Wise Affine Markov) (n, t) – tailed shifts 
maps minimize the BER under the SGA (Standard Gaussian 

Approximation) assumption in the asynchronous DS-CDMA 
system [5], [6]. However, this paper considers the more gen-
eral case of multilevel quantized (n, t) – tailed shifts se-
quences [7].  

This paper is organised as follows. The second para-
graph is presenting the BER estimation for the asynchronous 
DS-CDMA system for optimal spreading sequences and per-
fectly random (white) spreading sequences, assuming a fre-
quency non-selective fading channel with AWGN noise. The 
third part of the paper describes the design method for opti-
mal sets of chaotic multilevel quantized (n, t) – tailed shifts 
sequences based on their auto-correlation shaping. The fourth 
part presents some simulation results compared to the theo-
retical average values for both optimal and white sequences. 
Finally, some conclusions are drawn. 

2. AVERAGE BER ESTIMATION FOR 
ASYNCHRONOUS DS-CDMA SYSTEM 

Let’s consider the block scheme of the asynchronous DS-
CDMA system in figure 1 [1-3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. The asynchronous DS-CDMA system block 
scheme. 

The notations in figure 1 are as follows: K is the number of 
users, P is the common received power, 00 2 fπω =  is the 
common carrier pulsation, ak(t) is the waveform for the 

spreading sequence )( )(k
ja , with the chip period Tc=T/N, 
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bk(t) is the binary data sequence for user k, Kk ,1= . The 
asynchronous DS-CDMA system consists of random initial 
phases of the carrier πθ 20 <≤ k  and random propagation 

delays Tk <≤ τ0  for all the users Kk ,1= . The transmis-
sion channel is assumed to be a non-selective fading Rician 
channel with two-sided PSD (Power Spectral Density) N0/2 
additive Gaussian noise. The output signal of a Rician nonse-
lective fading channel is the sum of a non-faded version of 
the input signal (specular component) and a non-delayed 
faded version of the input signal (scatter component). All 
communications links are assumed to fade independently. 

k
lA is a positive random variable satisfying the normalisation 

constraint ( ) 1}]{[ 2 =k
lAE and k

lθ  is the phase shift due to 
fading, both being uniformly distributed. We also assume that 
all users have the same faded power ratio 
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2 ... Kγγγγ ==== . There is no loss of generality to 
assume that 0=iθ  and 0=iτ  for the desired user i, and to 
consider only Tk <≤ τ0  and πθ 20 <≤ k for any ik ≠ . 

Under the assumptions considered above the mean and 
the variance of the correlator output Zi are given by [1-3]: 
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where 4/0
2 TNn =σ  is the variance for the additive Gaus-

sian noise [2], the second term represents the faded compo-

nent power from the user i, and )(2 iAσ  is the overall (non-
faded) interference (MAI – Multiple Access Interference) 
power for the desired ith user. 

The MAI variance for the desired ith user can be com-
puted as [1-3], [7]: 
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where rk,i represents the interference term corresponding to 
the interfering user k. The interference term rk,i from expres-
sion (2) can be written in terms of the cross-correlation func-
tion as [1]: 
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where Ck,i(l) is the discrete aperiodic cross-correlation func-

tion for the sequences )( )(k
ja  and )( )(i

ja , defined as: 
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and NllC ik ≥= for,0)(, . 
The BER for the desired user i, with the spreading se-

quence Nj
i
ji aa ,1

)( )()( =

∆
= , may be estimated under the SGA 

(Standard Gaussian Approximation) assumption as [1-3]: 
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where the Q function is given by �
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In order to derive a general result it is necessary to estimate 
an average BER over the whole set of spreading sequences: 
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Expression (6) is difficult to work with because the Q func-
tion is non-linear. Hence, under the SGA condition a good 
approximation of (6) is given by: 
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It is known that when perfectly random sequences (white 
noise-like sequences) are employed, the average MAI vari-
ance from (7) may be written as [1]: 
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According to [6] the lower bound of average BER for all 
the users can be attained if using spreading sequences that 
have the following auto-correlation ensemble (2nd order mo-
ment) expression:  
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where 32 −=r . 
Note that when l<<N, Ak(l)≈(-r)l, which decays exponen-

tially with alternate sign. By introducing (9) into (2) and (3), 
the minimum interference power is obtained for user i [6]: 
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Comparing the optimum case with the case when white 
sequences are employed for spreading, the first one offers an 
increase in the system BER performances. By writing the 
ratio of the minimum interference variance over the variance 
term for the white sequences case we have 
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which increases the number of users accommodated for the 
same mean BER, from the white sequences case to the opti-

mum case, by 1.15473/2/ ≅→whiteoptimum KK for large 

numbers of users. It is obvious from (11) that the optimum 
case increases the number of users by more than 15% than 
the white spreading case, for the same mean BER. 

3. OPTIMUM QUANTIZED SPREADING 
SEQUENCES GENERATED BY (N, T) – TAILED 

SHIFTS MAPS 

One of the well known family of PWAM (Piece-Wise Af-
fine Markov) maps that generate chaotic sequences is the (n, 
t) – tailed shifts map, defined as [4], [5], [6]: 
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for t < n/2, which is represented in figure 2. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The (7, 2) – tailed shifts map. 
It is known that these maps are exact and have a uniform 

invariant probability density function [5]. 
Using the tensorial algebra as in [5] it can be demon-

strated that for the (n, t) – tailed shifts map M-levels uni-
formly quantized sequences, the second order moment de-
fined in (9) has the following expression [7]: 
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for any k, where g = – t / (n – t), and the M levels uniform 
quantization function fi (x) for any i, is given by: 
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M taking values larger than 2. Following the same procedure 
for the binary quantized sequences, when M = 2 in (14), the 
second order moment has the following expression [5], [6]: 
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It is important to note that if the number of quantizing 
levels M is very large (M → ∞ at the limit, but practical val-
ues larger than 20 are enough as approximation) the normal-
ised second order moment in (13) may be written as follows: 
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Comparing expressions (15) and (16) with (9) it is easy to 
see that the optimum auto-correlation ensemble can be ap-
proximated by these sets of sequences if the following de-
signing condition is met: 
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by fixing the n and t parameters of the map, accordingly. This 
result is consistent with the results in [6].  

Considering these two limits of quantized sequences and 
the approximation in (17), then the average MAI variance 
from (2) may be estimated as [7]: 
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for M = 2 levels, and 
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for a very large number of levels, M → ∞. 
The quantized sequences with average MAI variances in 

(18) and (19) increase the number of users accommodated 
for the same mean BER, from the white sequences case by 
the following factors: 

1.167/
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for large numbers of users. From relations (20) it is obvious 
that the use of binary quantized sequences determines a sys-
tem capacity increase by more than 16% for the same mean 
BER. This case is consistent with the optimum case derived 
in section 2. When a very large number of levels is used for 
quantizing the sequences a system capacity increase by more 
than 7% is noted, for the same mean BER. 
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4. SIMULATION RESULTS 

The asynchronous DS-CDMA system presented in section 
2 using quantized (50, 11) – tailed shifts sequences and Gold 
sequences generated by primitive polynomials of degree 

6=n , having the period 6312 =−= nN , was considered 
for simulation. The maximum number of quantizing levels is 
M=128. The parameters values of the (n, t) – tailed shifts 
map were chosen to match the condition in (17): 

r
tn
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−
=− 320.2680.282

39
11
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The estimated average BER was evaluated for 10=K  
users and the energy-per-bit to noise DSP ratio 0/ NEb  tak-
ing values from 0 to 30 dB. The common faded power ratio 

is taking the value 1.02 =γ . The resulting BER as a function 
of the ratio 0/ NEb  is depicted in figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Theoretical and simulated BER as function of 
Eb/N0 ratio for asynchronous DS-CDMA system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Theoretical and simulated BER as function of the 
number of users K for asynchronous DS-CDMA system. 
  
The asynchronous DS-CDMA system capacity is also an 

important parameter to measure. The average BER was esti-
mated considering several values for the number of users 
K∈{12 … 30} having the same value of the energy-per-bit to 

noise DSP ratio Eb/N0=24dB. The resulting BER values as a 
function of the number of users K are depicted in figure 4. 

The simulation results show that binary optimal (M=2) 
and multilevel (M=128) quantized (50, 11) – tailed shifts 
sequences are better than Gold sequences in terms of allow-
able number of users (figures 3 and 4) by more than 15%, 
and 7%, respectively. This result is consistent with the ana-
lytical result presented in section 3. However, there are some 
differences between the simulation and analytical results 
given the fact that Gold sequences are not perfectly white, 
quantized (50, 11) – tailed shifts sequences are in fact 
pseudo-optimal, and the SGA approximation is not quite 
valid for a small number of users. 

5. CONCLUSIONS 

A family of optimal spreading sequences for the asyn-
chronous DS-CDMA system for the SGA approximation 
hypothesis was considered for minimising the average BER. 
The sequence generation method for the quantized (n, t) – 
tailed shifts map and their correlation properties were also 
presented. The BER performance of the asynchronous DS-
CDMA system was estimated assuming a frequency non-
selective fading channel with AWGN noise. Hence, an asyn-
chronous DS-CDMA system using optimal sequences offers 
a capacity increase of about 15% than when white sequences 
or Gold codes are used. The sensitive dependency of chaotic 
maps on the initial condition offers both a greater number of 
available sequences and security increase. 
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