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ABSTRACT

Spectral subtraction is one of the earliest and longest standing, pop-
ular approaches to noise compensation and speech enhancement. A
literature search reveals an abundance of recent research papers that
report the successful application of spectral subtraction to noise ro-
bust automatic speech recognition (ASR). However, as with many
alternative approaches, the benefits lessen as noise levels in the or-
der of 0 dB are approached and exceeded.

Previously published works relating to spectral subtraction pro-
vide a theoretical analysis of error sources. Recently the first empir-
ical assessment showed that these fundamental limitations can lead
to significant degardations in ASR performance. Results illustrate
that under particularly high noise conditions these degradations are
comparable to those caused by errors in the noise estimate which
are widely believed to have by far the greatest influence on spectral
subtraction performance. The original contribution made in this pa-
per is the assessment of the fundamental limitations of a practiclal
implmentation of spectral subtraction under the European standard
ETSI Aurora 2 experimental protocols. Results illustrate that, per-
haps contrary to popular belief, as noise levels in the order of 0 dB
are approached phase and cross-term error sources do indeed con-
tribute non-negligible degradations to ASR performance. This is
believed to be a new observation in the context of spectral subtrac-
tion and ASR.

1. INTRODUCTION

The removal of background noise from speech signals has long been
the subject of research interest and there exist a plethora of different
approaches to accomplish what is often an extremely challenging
task. Spectral subtraction is one of the earliest and longest standing
approaches to noise compensation and speech enhancement brought
about, in part, due to its simplicity and versatility. Spectral subtrac-
tion was developed in 1979 by Boll [1] and a literature search re-
veals an abundance of research papers, both long past and recent,
that have investigated the application of spectral subtraction as well
as the optimisation of the algorithm itself.

Depending on the application the assessment of spectral sub-
traction can be subjective (judged by human listeners) such as in the
original work of Boll [1] and Berouti et al [2], or it can be objective
in terms of automatic speech recognition (ASR) as in the subsequent
work of Lockwood et al [3, 4, 5] from 1991. The majority of recent
literature with a spectral subtraction theme focuses on ASR appli-
cations, assessing the effectiveness of the process in terms of ASR
word accuracy with different spectral subtraction configurations.

However, improvements in ASR performance obtained through
spectral subtraction tend to diminish as noise levels in the order of
0 dB are approached. In fact, it is difficult to find publications that
report any improvements in intelligibility through the processing of
speech by spectral subtraction.

Previously published works [6, 7, 8] relating to spectral subtrac-
tion provide a theoretical analysis of error sources, namely phase,
cross-term and magnitude errors. Surprisingly perhaps, to the Au-
thors’ best knowledge there are no studies that have compared the

contribution of each error source to the performance of spectral sub-
traction using controlled, standard experimental conditions. Thus
herein lie the objectives of this paper, namely to assess each indi-
vidual error source as a function of noise level. Experiments are
performed in a conventional spectral subtraction framework where
the cost function is ASR word accuracy.

The remainder of this paper is organised as follows. Section 2
describes what might be considered as a conventional implementa-
tion of spectral subtraction and also describes the error sources and
fundamental limitations of spectral subtraction that are assessed in
this paper. Section 3 describes the ASR database and experimental
setup. Results are presented in Section 4 and conclusions follow in
Section 5.

2. SPECTRAL SUBTRACTION

Spectral subtraction is not a recent approach to noise compensation
and was first proposed in 1979 [1]. There is however a vast amount
of more recent work in the literature relating to different implemen-
tations and configurations of spectral subtraction. The objective in
this section is thus to describe what is perhaps best termed as a
conventional implementation of spectral subtraction drawing from
[1, 2, 3] and is that upon which the experimental work in this paper
is based. Section 2.1 describes the implementation and Section 2.2
illustrates the fundamental limitations of the approach.

2.1 Implementation

The goal of spectral subtraction is the suppression of additive noise
from a corrupt signal, in this case a speech signal. Speech degraded
by additive noise can be represented by:

d(t) = s(t)+n(t), (1)

where d(t), s(t) and n(t) are the degraded or corrupt speech, orig-
inal clean speech (no added noise) and noise signals respectively.
From the discrete Fourier transform (DFT) of sliding frames typ-
ically in the order of 20-40 ms, an estimate of the original clean
speech is obtained in the frequency domain by subtracting the noise
estimate from the corrupt power spectrum:

|Ŝ(e jω )|2 = |D(e jω )|2 −|N̂(e jω )|2, (2)

where the ˆ symbol indicates an estimate as opposed to observed sig-
nals. The assumption is thus made that noise reduction is achieved
by suppressing the effect of noise from the magnitude spectra only.

The subtraction process can be in power terms as in Equation
2 or in true magnitude terms, i.e. using the square roots of the
terms in Equation 2. The important point is that phase terms are
ignored. Both forms of magnitude subtraction occur frequently in
the literature and perhaps for practical reasons little or no reference
is made to phase. Power (magnitude) subtraction is adopted here as
it is more common in the literature and since experimental evidence
suggests there is little difference between the two [9].

The noise estimate in Equation 2 is conventionally obtained
during non-speech intervals and in the frequency domain from short
term magnitude spectra:



|N̂(e jω )|2 =
1

T

T

∑
i=1

|Di(e
jω )|2, (3)

where, |D(e jω )|2 is the observed signal and where, for example in
[1], i = 1...T corresponds to an average over 1/3 s.

For speech enhancement applications, where a time domain
representation is sought, a complex estimate (magnitude and phase),

Ŝ(e jω ), is required and in practice this is obtained by combining
the enhanced magnitude with the phase of the corrupt spectrum,

θD(e jω ):

Ŝ(e jω ) =
[

|D(e jω )|2 −|N̂(e jω )|2
]1/2

eθD(e jω ) (4)

A time domain representation is then resynthesised via the in-
verse DFT. Negative values at any frequency, ω , occur whenever

|N̂(e jω )| > |D(e jω )| and thus generally necessitate some form of
post-processing prior to resynthesis since they have no physical
meaning.

Nearly all later work has found that improved results are ob-
tained by employing noise over-estimates and noise floors, the ideas
for which were introduced by the early original work of Berouti [2].
Equation 4 is thus modified to:

Ŝ(e jω ) = max
([

|D(e jω )|2 −α|N̂(e jω )|2
]

,

β |D(e jω )|2
)1/2

eθD(e jω ), (5)

where α is the noise over-estimation parameter and β is the noise
floor as in [2, 3]. The idea is to artificially increase noise attenua-
tion through α and then to simultaneously suppress musical noise
and negative values in the processed magnitude spectrum through
β . The two parameters are usually noise-dependent, an intuitive il-
lustration of which is provided by considering spectral subtraction
as a zero-phase filter and plotting the gain against the noisy-signal-
to-noise-ratio (NSNR) as in [8, 9].

2.2 Fundamental Limitations

The emphasis here is to illustrate the fundamental limitations of
spectral subtraction. In [6] it is shown that the clean speech spec-

trum, S(e jω ), in exact terms, is expressed by:

S(e jω ) =
[

|D(e jω )|2 −|N(e jω )|2 −S(e jω ) ·N∗(e jω )−

S∗(e jω ) ·N(e jω )
]1/2

eθS(e
jω ), (6)

where S(e jω ) ·N∗(e jω ) and S∗(e jω ) ·N(e jω ) are termed throughout
this paper as cross-terms. Comparing Equations 4 and 6 there are
thus three sources of error in a practical implementation of spectral
subtraction:

• phase errors, errors arising from the differences between

θS(e
jω ) and θD(e jω ),

• cross-term errors, from neglecting S(e jω ) · N∗(e jω ) and

S∗(e jω ) ·N(e jω ), and

• magnitude errors, which refer to the differences between

|N(e jω )| and |N̂(e jω )|.

It is usually assumed that phase errors do not impact on ASR
performance. Clearly returning to a time domain representation of
the processed speech is likely to introduce phase errors, associated

with the differences between θS(e
jω ) and θD(e jω ). Phase errors

are considered in this paper to embrace situations where it is desir-
able to produce an enhanced time domain speech signal as well as
ASR. Cross-terms are also thought to have a negligible effect based
on the assumption that the speech and noise are uncorrelated, thus

in discussion and analysis they are generally omitted. The proce-
dure in practice focuses only on the magnitude: obtaining effective

estimates of |N(e jω )|.
It is the objective of the experimental work presented in this pa-

per to assess the impact on ASR of these fundamental assumptions.
First though, the experimental database and ASR configuration is
described.

3. DATABASE AND ASR CONFIGURATION

The European standard Welsh SpeechDat(II) FDB-2000 database
[10], hereafter referred to as WSD(II), is used throughout with a
standard ETSI Aurora 2 style experimental setup [11, 12].

3.1 The Welsh SpeechDat(II) Database

The WSD(II) telephony database was collected largely over a pub-
lic switched telephone network and a smaller component over var-
ious cellular networks in the UK. The motivations for using this
database, apart from its obvious suitability as a telephony ASR
database, arose through the preference for a labelled database. The
labelling means that noise estimation in non-speech intervals is eas-
ily implemented without the prior optimisation of a voice activity
detector (VAD). Assessment of spectral subtraction through ASR
is not then influenced by the performance of a VAD or alternative
approaches to noise estimation.

3.2 Speech Data and Noise Addition

The WSD(II) database was recorded from members of the Welsh
speaking public. The database contains typical significant levels
of home background noise with a smaller number of more noisy
mobile phone calls. The interest here is in assessing the limitations
of spectral subtraction in the presence of noise and so further noise
was added to the original clean speech. For the experimental results
reported in this paper car noise was added to the clean speech data
justified by the popular application of in-car, noise robust automatic
speech recognition.

From the mobile telephony components of the database, a sub-
set of 10 Welsh isolated digits was selected comprising 100 speaker
training utterances and 1500 speaker test utterances; each speaker
contributes only one utterance (either test or training). There is no
overlap between speakers in training and testing. To evaluate the
performance of spectral subtraction under different levels of noise,
real car noise was added to the test data at six different SNRs (20,
15, 10, 5, 0 and -5 dB), as is the case with the Aurora 2 database.
Noise addition was performed using standard ITU software con-
forming to the G.712 [13] and P.56 [14] standards and again follows
closely the experimental setup of the Aurora 2 database. One dif-
ference in the setup is that the speech data in the WSD(II) database
was collected ‘in the field’ and not under laboratory ‘clean’ condi-
tions, as is the case for the original TIDigits data [15] of the Aurora
2 database. Consequently, the G.712 filtering that is applied to the
speech and noise signals in the Aurora 2 setup, was applied only to
the noise in the WSD(II) setup, the speech data having already been
telephony-band filtered. No noise is added to the training data.

3.3 Feature Extraction and Recognition

The Aurora 2 W1007 standard front-end [11, 12] is used for fea-
ture extraction and an Aurora 2 style back-end, modified to utilise
speech, non-speech labels is used for recognition. Details of the
Aurora 2 front-end and the HTK reference recogniser can be found

in [11, 12]. In summary, 39th order feature vectors consisting of
cepstral, delta and acceleration coefficients and log energy are ex-
tracted from 25 ms frames with 10 ms overlap. As for the Aurora
2 standard experimental setup, whole word HMMs are trained with
simple left-to-right models.

The baseline WSD(II) recognition results are presented in Fig-
ure 1 (last profile). A word recognition accuracy of 89% without
added noise drops to 15% at -5 dB. Spectral subtraction is adopted



as a pre-processing, speech enhancement stage prior to feature ex-
traction. All improvements may therefore be attributed to spectral
subtraction and not to any modifications to either the feature extrac-
tion or recognition stages.

4. EXPERIMENTAL WORK

The objectives and original contribution of this work relate not to
the optimisation of spectral subtraction but rather to an assessment
of the fundamental limitations of spectral subtraction. The contri-
bution of each error source to the degradation in spectral subtraction
performance are compared first independently and then collectively
in terms of ASR word accuracy. The experimental work was per-
formed under the standard experimental conditions outlined above
and in a common, conventional spectral subtraction implementa-
tion described above and in Section 4.1. Phase errors are assessed
in Section 4.2, cross-term errors in 4.3 and magnitude errors in 4.4.

4.1 Spectral Subtraction Framework

Each error source is assessed with a common spectral subtraction
implementation. The complex, frequency domain representations

of the clean speech, S(e jω ), corrupt speech, D(e jω ), and corre-

sponding noise, N(e jω ), are all derived using the discrete Fourier
transform (DFT) from frames of 32 ms with an overlap of 16 ms.
The phase of both the degraded and original speech as well as the
cross-terms in Equation 6 are all known and thus the contribution to
ASR performance degradation due to phase and cross-term errors
may be assessed independently and collectively. Noise estimation
is performed over 0.5 s during non-speech intervals either side of
speech periods. In each condition the noise over-estimate, α , and
noise floor, β , are varied as indicated below and chosen to optimise
ASR word accuracy for each noise level.

4.2 Phase Errors

Modified to utilise noise over-estimates and noise floors and to in-
clude phase errors, Equation 6 is rewritten as:

Ŝ(e jω ) = max
([

|D(e jω )|2 −α|N(e jω )|2 −S(e jω ) ·N∗(e jω )

−S∗(e jω ) ·N(e jω )
]

,β |D(e jω )|2
)1/2

eθD(e jω ) (7)

The first profile in Figure 1 illustrates the effect of phase er-
rors on ASR performance as a function of SNR. Using the corrupt
speech phase to resynthesise the processed speech in the time do-
main, a negligible decrease in word error rate is observed. Phase
errors cause a drop in word accuracy from 89% under clean con-
ditions to 86% at -5 dB. Thus phase errors contribute very little to
ASR performance degradation.

4.3 Cross-term Errors

Cross-terms are also commonly assumed to have only a small influ-
ence on spectral subtraction performance. This is because in the

ideal the cross-term components, S(e jω ) · N∗(e jω ) and S∗(e jω ) ·
N(e jω ), average to zero.

The known noise values are again used for subtraction but
cross-term components are omitted. The processed signal is then

resynthesised with the phase of the original speech, θS(e
jω ):

Ŝ(e jω ) = max
([

|D(e jω )|2 −α|N(e jω )|2
]

,

β |D(e jω )|2
)1/2

eθS(e
jω ) (8)

The second profile in Figure 1 illustrates ASR performance
with cross-term errors as a function of SNR. The performance
degradation caused by cross-term errors becomes significant at the
lowest SNRs. At 10 dB a word accuracy of 86% is observed. This
falls to 66% at -5 dB.
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Figure 1: ASR word accuracy for the WSD(II) database with dif-
ferent sources of error in a common spectral subtraction implemen-
tation. The five profiles illustrate, from top to bottom, ASR per-
formance with phase errors (first profile), cross-term errors (sec-
ond profile), combined phase and cross-term errors (third profile),
and the performance of conventional spectral subtraction with all
three errors sources (fourth profile). Profiles illustrated together
with the baseline performance without treatment by spectral sub-
traction (fifth profile).

4.4 Magnitude Errors

Two further profiles in Figure 1 illustrate the performance of spec-
tral subtraction with combined phase and cross-term errors, first

with the actual noise values, |N(e jω )|, (third profile) and then with

estimates, |N̂(e jω )|, (fourth profile).
The third profile illustrated in Figure 1 illustrates the funda-

mental limitations of spectral subtraction, given that by convention,
phase and cross-term errors are ignored. The profile therefore il-
lustrates the likely optimal performance if, in a conventional im-
plementation of spectral subtraction, a perfect estimate of the noise

magnitude, |N(e jω )|, is applied. The subtraction is thus as in Equa-

tion 8 except that eθS(e
jω ) is replaced by eθD(e jω ). At 10 dB a word

accuracy of 85% is observed. This falls to 62% at -5 dB. The pro-
files show that phase and cross-term errors lead to relatively neg-
ligible degradations in ASR performance for higher SNRs but that
this increases to non-negligible levels as SNRs in the order of 0 dB
are approached.

A configuration with conventional noise estimates is now con-
sidered. The subtraction now incorporates a full complement of er-
rors: phase, cross-term and magnitude errors as per Equation 4. The
experiments thus relate to realistic conditions except perhaps that
there is a constant, controlled SNR for each experiment. The objec-
tive is to compare performance with a full complement of errors to
conventional spectral subtraction with a perfect noise estimate. The
profiles show that for SNRs above 0 dB the greatest contribution to
ASR performance degradation comes from magnitude errors and,
at 0 dB, corresponds to a word accuracy of 75% without magnitude
errors to 51% with magnitude errors. However, as SNRs of 0 dB are
exceeded the contribution of phase and cross-term errors increases
to a comparable level to that of magnitude errors. At -5 dB a word
accuracy of 62% without magnitude errors falls to 35% with a full
complement of errors.

4.5 Discussion

Figure 1 compares the contribution to ASR performance degrada-
tion coming from phase (Section 4.2), cross-terms (Section 4.3) and
combined errors (phase, cross-term and magnitude errors, Section
4.4). The top four profiles illustrate the degradation in ASR per-
formance as each error is introduced. The top two profiles illus-



trate ASR performance with only phase errors and only cross-term
errors respectively. The third profile illustrates performance with
combined phase and cross-term errors and thus represents a conven-
tional implementation of spectral subtraction though with a perfect
noise estimate. The fourth profile (spectral subtraction) illustrates
performance with combined phase, cross-term and magnitude er-
rors and thus represents the performance of spectral subtraction in a
realistic sense. Except for the lowest noise levels, magnitude errors
are confirmed to lead to significantly greater degradations in ASR
performance than phase and cross-term errors. These results illus-
trate that, perhaps contrary to popular belief, as noise levels in the
order of 0 dB are approached and exceeded phase and cross-term
errors do indeed contribute to ASR performance degradation on a
scale comparable to the degradations caused by errors in the mag-
nitude. This is believed to be a new observation in the context of
spectral subtraction and ASR.

The performance of speech enhancement in an ASR context is
often gauged against the performance under clean conditions. For
spectral subtraction, whilst this comparison is reasonable, it does
not take into account the fundamental limitations that this experi-
mental work highlights. In the application of spectral subtraction to
speech enhancement considered here, unless the phase and cross-
term errors are taken into consideration, ASR performance follow-
ing spectral subtraction is likely to fall short of that under clean
conditions, even with a perfect estimate of the noise magnitude.

5. CONCLUSIONS

Research efforts since the debut of spectral subtraction in 1979 often
focus on obtaining the best possible estimates of the noise magni-
tude. Previously published work has identified three error sources
in a conventional implementation of spectral subtraction, namely
phase, cross-term and magnitude errors. This is believed to be the
first paper to assess the fundamental limitations of spectral subtrac-
tion in a conventional implementation through ASR and controlled,
standard experimental conditions. Results confirm that, except for
the worst levels of SNR, errors in the magnitude do indeed make the
greatest contribution to ASR performance degradation. However, as
noise levels in the order of 0 dB are approached the contributions
of phase and cross-term errors are not negligible and lead to degra-
dations that are comparable to those caused by magnitude errors.
This observation indicates that new approaches to noise compen-
sation and speech enhancement should perhaps consider phase and
cross-term errors, particularly at poor SNRs.
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