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Abstract

Current telephone networks compromise bandwidth for ef-
ficiency. The impairment of the audio quality in telephony
has become a problem for the rapidly emerging sophisticated
wideband telecommunications systems. We present a classi-
fied bandwidth extension algorithm which recovers the miss-
ing highband portion of telephony signals. We describe a
new highband excitation generator, a Pitch-Synchronized-
BandPass-Shifted-Sum excitation for strongly harmonic sig-
nals such as some voiced phonemes or some music audio
signals. For other signals, a BandPass Envelope Modulated
Gaussian Noise is used as the highband excitation. The high-
band spectrum envelope and the excitation gain are esti-
mated using classified Gaussian Mixture Models. Objective
measurements of spectrum sections and informal subjective
tests of both reconstructed telephony speech and audio sig-
nals show more highband harmonic textures for strongly har-
monics signals than previous bandwidth extension methods.

1 Introduction

Current telephone networks employ a bandwidth of 300-
3400 Hz. Meanwhile, the international telecommunication
community has foreseen the fast deployment of wideband
telecommunications networks, such as for third generation
wireless systems (3GPP, 3GPP2 and MPEG) and has spec-
ified wideband speech codec standards, as SMV and AMR-
WB. The wideband systems deliver signals with bandwidth
of 50-7000 Hz which preserve perceptually better natural-
ness — “presence”’, better intelligibility and better speaker
identity. Bandwidth extension is an alternative way to sub-
stantially improve the quality of legacy networks. Wideband
signals can be, approximately, reconstructed by bandwidth
extension at the network terminal receiver side.

Based on a linear prediction (LP) synthesis model, the
great challenge of the bandwidth extension system is how
to recreate an excitation and a spectrum envelope of the
missing band (3400-7000 Hz) from a telephony signal of
300-3400 Hz bandwidth. The basic procedure is shown in
schematic form in Fig. 1. The narrowband signal is first
upsampled to 16 kHz to match the digital wideband sig-
nal requirement. The narrowband signal then is passed to
two branches: the right one is used to generate the missing
highband spectrum envelope and to estimate the highband
gain. The left branch produces the missing highband ex-
citation. The excitation signal multiplied by the estimated
gain ¢ is input to an LP synthesis filter (modelling the esti-
mated spectrum envelope) to reconstruct the missing high-
band components. The reconstructed highband signals is
combined with the narrowband to form a wideband signal.
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Fig. 1 The LP synthesis model of highband regeneration

Because only the narrowband signal is available at the
receiver side, recovery of the lost highband components
strongly depends on the correlation between the missing
highband components and the narrowband signal. The
higher the correlation, the better the highband reconstruc-
tion. The degree of the statistical correlation sets the bound-
ary of the bandwidth extension methods.

A number of researchers have addressed the key issue for
evaluating the spectrum envelope of the missing band (3400—
7000 Hz)[1], 2], [3], [4]. We have tried to employ several
methods, such as VQ codebook mapping [5], an MMSE
Gaussian Mixture Model (GMM) estimator, or a Hidden
Markov Model (HMM) estimator to estimate the spectrum



envelope of the missing highband components using the pa-
rameters of a lowband spectrum envelope, a pitch prediction
gain and the pitch frequency FO [6], [7], [8]. Our objec-
tive measurements of RMS-Spectral Distortion (RMS-SD)
are close to previously published values, about 6 dB. An
RMS-SD of 5-6 dB, probably is the bound of the state-of-
the-art highband spectrum estimation algorithms. Although
that value of RMS-SD is much larger than the well-known
transparent criterion of 1 dB for low bit-rate narrowband
speech coding, it proves to be adequate for highband estima-
tion in bandwidth extension.

Another important issue is the generation of the missing
highband excitation signal. Basically, a deterministic ap-
proach is used to create an approximate substitutes for the
highband excitation. FEither spectral folding of a lowband
signal or its residual, as in RELP (Residual-Excitation LP)
speech coders, is applied in many papers. This approach re-
sults in too high a level of high frequency components and
introduces phase distortion. The excitation can also be con-
structed by periodic pulses for voiced phonemes or noise for
unvoiced ones. That brings about more distortion as artifi-
cial sounds in reconstruction signals as in early low bit-rate
vocoders.

In this paper, we focus on a new highband excitation
generator, a Pitch-Synchronized-BandPass-Shifted-Sum ex-
citation for strongly harmonic signals, such as some voiced
phonemes or some music signals. For other signals, a Band-
Pass Envelope Modulated Gaussian Noise is used to be the
missing band excitation. The highband spectrum envelope
and excitation gain are estimated using classified Gaussian
Mixture Models. The classification is based on a pitch pred-
ication gain and zero-crossings. In addition, we employ two
post-filters (one for frequencies below 4 kHz the other for
frequencies above 4 kHz) to further enhance the quality of
bandwidth extended signals.

2 The Characteristics of Highband Spectra

We have observed the characteristics of highband spectra
of phonemes of female and male speech, and audio signals.
We note that some voiced phonemes, particularly for female
speakers, show strong harmonics in the highband portion,
for instance in the ‘a’ in the word ‘small’, as shown in the
top of Fig. 2. The similar features have been found in spec-
tra of other voiced phonemes, (‘en’ in ‘bent’; ‘aw’ in ‘gnaw’
and ‘I’ in ‘fish’; etc.). Some voiced phonemes display noisy-
like characteristics in the highband, as ‘u’ in ‘pup’ for a fe-
male speaker and ‘i’ in ‘wide’ of a male speaker, although
they have strong harmonics in the lowband, as depicted in
the second and third parts of Fig. 2. Most of male voiced
phonemes do not have harmonics in the highband. Noise-like
spectra of unvoiced phonemes are well known, as shown in
the bottom of Fig. 2.

Music signals exhibit similar strong harmonics of some
notes in the highband while the highband is noise-like for
other notes, as shown in Fig. 3.
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Fig. 2 The highband spectra of typical phonemes: female
speaker, phoneme ‘a’ (top); female speaker, phoneme ‘u’ (sec-
ond from top); male speaker, phoneme ‘i’ (third from top); female
speaker, unvoiced ‘s’ (bottom)

The spectrum of the reconstructed highband signal,
She(f), can be expressed as

Shve(f) = g ens(f) Hno(f).- (1)
where epp(f) is the highband excitation spectrum, Hpp(f)
is the estimated LP highband spectrum envelope, and g is
the estimated gain. The harmonics structure depends on
the erp(f) in the highband excitation spectrum. It is not
possible to generate harmonics in the highband, if there are
no harmonics in exs(f).
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Fig. 3 The highband spectra of orchestral music: Notes with
strong harmonics (top); notes without harmonics in highband.
(bottom)

That motivates us to develop a Pitch-Synchronized-
BandPass-Shifted-Sum (PSBPSS) excitation for creating



a strong-harmonic texture in those corresponding voiced
phonemes or music notes.

3 Pitch-Synchronized-BandPass-Shifted-
Sum (PSBPSS) excitation

The principle of the PSBPSS excitation is illustrated in
Fig. 4. The narrowband signal is first passed into a bandpass
filter of a bandwidth of 1 000 Hz. The centre frequency of the
bandpass filter is 3500 Hz. The motivation for choosing a
bandpass signal (3 0004 000 Hz) originates from the observa-
tions that the highband harmonics are close to the texture of
this bandpass signal and are quite different from its lowband
counterparts (300-3 000 Hz) as shown in Fig. 2. Then, three
modulators shift the bandpass signal to three upper bands
(4000-5 000 Hz, 5000-6 000 Hz and 6 0007 000 Hz), pitch-
synchronously. Each modulator is an upper band Single-
SideBand modulator using a phase descrimination method

[9).

Sussp(n) = 0.5 Sy,(n) cos(Awn) — 0.5 Sy, (n) sin(Awn).

(2)

where Sy, (n) is the bandpass signal centered at 3500 Hz,
Syp(n) is the Hilbert Transform of Sy,(n). Aw is the shifted
frequency which is an integer multiples of the pitch frequency
F0. All the consecutive bandpass signals are spaced by a
pitch FO. Finally, the three bandpass signals are summed up
to form a PSBPSS excitation signal in the upper band. Fig. 4
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Fig. 4 The highband PSBPSS generation

also shows the schematic spectra of those bands and the
PSBPSS in the highband. As an example, we have plotted
the PSBPSS spectra, Epsppss(f) of a frame of a phoneme ‘a’
(female speaker) in the word of ‘small’ in Fig. 5.

We have employed an Enhanced BandPass Envelope Mod-
ulated Gaussian noise (EBP-MGN) in our early bandwidth
extension system. Although the EBP-MGN has been proven
effective for those noise-like or weak harmonic signals, there
is no apparent harmonics in the excitation of the highband.
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Fig. 5 The highband PSBPSS spectrum of a phoneme ‘a’

Fig. 6 illustrates the highband EBP-MGN spectrum of the
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Fig. 6 The highband EBP-MGN spectrum of a female phoneme
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same phoneme ’a’ as in Fig. 5. Obviously, EBP-MGN is not
able to reconstruct the strong-harmonic texture in the high-
band. Therefore, it’s better to classify the signal into two
modes: a strong-harmonic mode and a noise-like mode to
match their desirable distinct features of excitation. The
strong-harmonic mode employs PSBPSS as its excitation
while the other modes use EBP-MGN for excitation.

4 The Classified gain estimation using
GMMs

An excitation gain, g, is an important parameter to be esti-
mated in the LP synthesis model in Fig. 1. The g is intro-
duced to scale the synthesized highband components to an
appropriate energy. The energy of the reconstructed high-
band components should be equal to the energy of the corre-
sponding frequency band in wideband signal. The excitation
gain g is calculated as the square root of the energy ratio of
the original highband signal, Sx,(f), to the synthesized one,
Sres(f) = En(f) - Hnp(f) in Eq. 1, of each frame.
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Since the excitation gain g depends on the excitation Enp(f),
we train two classified GM modes of the estimated values :
gshm With PSBPSS excitation for a strong-harmonic signal,
gnm with EBP-MGN for other signals.

We derive the statistical parameters of two Gaussian mix-
ture pdfs. Each of them is a joint pdf of the narrowband
spectrum and the excitation gain parameters from the train-
ing program. We employ probabilistic estimation to get an
estimated gshm OT gnm on Minimum Mean Square Error cri-
terion.

Because of the well-known properties (ordering and quan-
tization error resilience) of the Line-Spectrum-Frequencies
(LSF) representation, we use 14 and 10 LSFs to represent
the narrowband and highband spectrum, respectively. The
LSFs and the excitation gain, gshm O gnm , constitute a
random vector, whose probability density function (pdf) can
be approximated by a GM pdf.

g= (3)



The GM pdf is a weighted sum of M D-dimensional joint
Gaussian density distributions.

M
pz(z|a,,u,2) :Zalbl(‘z'y’wzl) (4)
=1

where M is the number of individual Gaussian components,
the a;, i =1,..., M are the (positive) mixture weights, and
Z is a D-dimensional random vector. Each density is a D-
variate Gaussian pdf of the form,

1 1 _
(271')D/2|2i|1/2 exp(2 (2 - Nz‘)TEi 1(Z —1y))-
(5)
with mean vector p,;, and covariance matrix ¥;. The GM
pdf is defined by the mean vectors, the covariance matrices
and the mixture weights for the Gaussian components.

The parameter set {a, pu, X} can be, iteratively, deter-
mined by the popular expectation-maximization (EM) al-
gorithm using maximum likelihood (ML) [10] for the given
training data. The training data of wideband speech are
taken from Speech Database with a total of 150000 frames
each of 20 ms with 1320 utterances, spoken by 24 speakers
(half male and half female).

Z is a 15-dimensional random vector, representing the 14
narrowband LSFs, the excitation gain gshm Or gnm. The
number of mixtures, M, is 128. The covariance matrices, 3;,
are diagonal. The gspm Or Gnm estimate is based on the GM
joint density distribution of Eq. (4). Let the random vector
x be the combination vector of the narrowband LSF vector.
For the sake of simplicity, we drop the the subscript spm and
nm in the expression of gspm Or gnm. The optimal estimate
which minimizes the error is found from 9¢?/8§ = 0.

bi(z|pi, i) =

M
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where f;4 is the mean of gspm Or gnmof the i-th Gaussian
component. The §op: estimate is the conditional expectation
of the piy mixture mean, given a narrowband LSF vector.
Similarly, we have established a GMM for the narrowband
LSF vector and the highband LSF vector. The highband LSF
vector can be estimated with an equation similar to Eq. (6).

(6)

Gopt =

5 Performance evaluation

We have accomplished objective and subjective evaluation of
the reconstructed signal of the classified bandwidth exten-
sion system. The classification is based on the degree of pe-
riodicity, measured in a pitch prediction gain, zero-crossings
and previous state. We observed that if the pitch prediction
gain is in the range of 0.95 to 1.05 and zero-crossings are
less than 85 in the lowband signal, the signal probably has
strong harmonics in the highband. We have plotted out a
spectrum section of a bandwidth extended signal of a female
phoneme ’a’ in word ’small’ (top) and a frame in orches-
tra notes (bottom) in Fig. 7. The strong-harmonics textures
are well preserved in bandwidth extended speech and audio
signals.

we employ a lowband post-filter and a highband one with
different parameters to further enhance the quality of band-
width extended signals. Informal listening tests shows the
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Fig. 7 The spectrum sections of a bandwidth extended signal of
a female phoneme ’a’ in word ’small’ (top) and a frame in orchestra
notes (bottom).

classified bandwidth extension scheme has noticeably im-
prove the quality of the telephony signals.
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