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Tel: +52 (55) 5061 3768 Fax: +52 (55) 5747 7088

e-mails: {eenea,d.c.mclernon,m.ghogho}@leeds.ac.uk and {aorozco,mlara}@cinvestav.mx

ABSTRACT

The problem of channel estimation, under the data-
dependent superimposed training (DDST) scheme, when no
synchronisation between transmitter and receiver exists, is
considered in this paper. The structure induced by the train-
ing sequence embedded in the transmitted signal is used to
achieve synchronisation via projection operators, from which
first, the value of the DC-offset and second, the channel co-
efficients can be extracted. The conditions for synchroni-
sation, channel estimation and DC-offset estimation are de-
rived. Note that this is the first synchronisation and DC-offset
estimation method presented for channel estimation using the
recently published DDST algorithm. Finally, simulations are
presented that illustrate the successful practical application
of our proposed method.

1. INTRODUCTION

In wireless communications, the channel estimation problem
benefits from the inclusion of a training sequence, as op-
posed to the long data-record demanding blind-identification
techniques. Traditionally, the training sequence and the data
sequence were allocated in separate time slots, as in TDM,
thus wasting bandwidth. An alternative method is the im-
plicit/superimposed training approach (IT/ST) [1–3], where a
periodic training sequence is actually added to the data prior
to transmission, at the expense of a small data power loss.

The performance of the ST method can be enhanced
using the recently published data-dependent ST (DDST)
method [4], where the interference between data and training
is removed. This is achieved by adding an additional data de-
pendent sequence (to the original superimposed training se-
quence) at the transmitter. The effect of this data-dependent
sequence is that in the DFT bins of the input signal where the
training sequence has energy, the contribution from the data
sequence is now effectively cancelled out, thus improving the
channel estimates over ST.

In both ST and DDST, synchronisation between transmit-
ter and receiver at training sequence level is required. Syn-
chronisation for ST was first studied in [2] in conjunction
with DC-offset estimation. The synchronisation was based
on higher-order statistics (HOS) and polynomial rooting and
only required that the training sequence period (P) is equal
to the number of channel taps (M) —i.e. P = M. The use of
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HOS and polynomial rooting was avoided in the synchroni-
sation method presented in [5], but as a consequence required
P ≥ 2M + 1. These two training sequence synchronisation
methods can be applied to DDST as well, but DDST addi-
tionally requires data block synchronisation to benefit from
channel estimates free from data ‘noise’.

In this paper, we concentrate on full synchronisation of
the more appealing DDST method. The new training se-
quence synchronisation part has a much lower computational
burden that the ones in [2,5]. An extension to the (necessary)
block synchronisation is then included. Finally, simulations
illustrate the excellent performance of this proposed method.

2. PROBLEM DESCRIPTION AND GEOMETRICAL
INTERPRETATION

The received data block for the DDST scheme is [4],

x(k) =
M−1

∑
l=0

h(l)b(k− l)+
M−1

∑
l=0

h(l)c(k− l)+

+
M−1

∑
l=0

h(l)e(k− l)+ n(k)+ m

(1)

with k = 0,1, ... ,N − 1, and where b(k) is the information
bearing sequence, h(k) is the channel impulse response of
order M − 1, i.e. h(0) 6= 0 and h(M − 1) 6= 0, n(k) is the
noise and m represents an unknown DC-offset term due to us-
ing first-order statistics (see (2)) with non-ideal RF receivers
(see [2]). Furthermore, c(k) is the superimposed training se-

quence with mean c̄ and power σ2
c , and e(k) corresponds to

a data-dependent training sequence term. All terms can be
complex valued. Both c(k) and e(k) are periodic with pe-

riod P ≥ M. Following [4], e(k) = − 1
NP

∑
NP−1
i=0 b(iP + k),

k = 0, ..., P− 1, with NP = N
P

. The channel coefficients,
according to [2, 4], can then be obtained from the cyclosta-
tionary mean y0( j) of the output x(k)

y0( j) := E[x(iP + j)] =
M−1

∑
l=0

h(l)c( j− l)P + m (2)

with j = 0, ... ,P − 1, where (·)P indicates arithmetic
modulo-P, and the subscript ‘0’ indicates that it is a fixed
(deterministic) value as opposed to a general variable y( j).
This nomenclature will be used throughout the rest of the pa-
per. Equation (2) can be written in matrix form as

y0 = C[M]h0 + m0 (3)



where C[M] is P×M and h0 = [h(0), h(1), ... , h(M − 1)]T

is M × 1; y0 = [y0(0), y0(1), ... , y0(P − 1)]T and m0 =
[m, ... , m]T are both P× 1; matrix C = circ(c(0), c(P−
1), c(P− 2), ... , c(1)), where ‘circ’ produces a circulant
matrix [6]. Finally, we have adopted the nomenclature that
for any matrix A, then A[L] and A〈L〉 correspond respectively

to the first and last L columns of A. So matrix C is thus com-
posed of C[M] in (3) and its ‘complement’ C〈P−M〉, where

C ≡
[
C[M]|C〈P−M〉

]
. (4)

To make the subspace interpretation that follows meaning-
ful, we require C to be full rank. This can be accom-
plished by using optimum channel independent (OCI) train-
ing sequences [2] that have the extra advantage of satisfying

CHC = CCH = Pσ2
c IP×P, thus simplifying the projection op-

eration between subspaces. So, from (3), the channel coeffi-

cients are obtained by (note that CH
[M]C[M] = Pσ2

c IM×M)

h0 =
1

Pσ2
c

CH
[M] (y0 −m0) . (5)

In the case that there is no synchronisation between trans-
mitter and receiver (as regards the training sequence c(k)),
once the cyclostationary means in (2) are computed, there is
no way to say which of them corresponds to j = 0, 1, etc.,
because of the synchronisation offset. So the actual com-
puted cyclostationary mean vector will be a cyclic permu-
tation (P0y0) of the true one (y0), because of the arithmetic
modulo-P operation in (2). It is important to note that a ma-
trix P0 that performs a cyclic permutation operation on any
vector is a circulant matrix.

For P = M, and when we do not have synchronisation at
the receiver as regards c(k), then P0y0 replaces y0 in (5) and
note that P0m0 can always replace m0. So we obtain P0h0

(instead of the true h0). This is because circulant matrices
(P0 and C[M=P] = C) commute [6]. Thus, synchronisation
reduces to finding the correct permutation matrix P0, as was
done for example in [2]. For P > M, the matrices C[M] and
P0 do not commute, and so the solution to (3) is not as previ-
ously stated. For this case we need to pre-process P0y0 and
select the correct solution among a set of candidates.

Important clues to develop a method for DDST synchro-
nisation can be derived from the previous paragraphs. Recall
that the method in [2] (for P = M) requires HOS and polyno-
mial rooting, and so is very complex. On the other hand, the
method in [5] (P > M) uses the FFT and is simpler that the
former (both developed for ST). Furthermore, (5) obtains the
channel vector just by projecting on the subspace spanned by
the columns of C[M] (recall that C is OCI). So we will set
out to investigate the advantages of using an overdetermined
system of equations (P > M) and try to interpret the problem
as a projection process.

To begin, the following lemma illustrates what happens
to the cyclostationary mean y0 after a cyclic permutation. But
as we are interesting in extracting the properties induced by
the training sequence, we examine C[M]h0 in (3) and note that
m0 is not affected by any (cyclic) permutation.

Lemma 1 For C full rank and P any cyclic permutation ma-
trix, then PC[M]h can be uniquely decomposed as

PC[M]h =C[M](P[hT 0P−M]T)[M]+

+ C〈P−M〉(P[hT 0P−M]T)〈P−M〉

(6)

where 0P−M is a 1× (P−M) vector of zeros and for a vector
v, v[M] (v〈P−M〉) are its first M (last P−M) elements.

Proof: First note that C[M]h = C[hT 0P−M]T ⇒ PC[M]h =

PC[hT 0P−M]T. Now, because circulant matrices commute

[6], PC[hT 0P−M]T = CP[hT 0P−M]T, and (6) follows from
(4). The uniqueness follows because C is full rank. Q.E.D

The interpretation of Lemma 1 is clear. Consider the vec-
tor space spanned by the columns of matrix C, which are also
a base for this space because C is full rank. In turn, C[M] and

C〈P−M〉 span two subspaces V and V⊥ respectively, that are

orthogonal because c(k) is OCI. Assume for the moment that
m = 0 in (2). The true cyclostationary mean vector y0 lies ex-
actly on V—i.e. it is a linear combination of the columns of
C[M]—but any cyclic permutation P 6= I of y0 will have com-

ponents in V⊥ as well. This important property can be used
to achieve synchronisation in the DC-offset free case [7]. The
next section develops the idea and proposes a general method
to deal with synchronisation in the presence of a DC-offset.

3. PROPOSED ALGORITHM FOR DDST
SYNCHRONISATION, ETC.

3.1 Training sequence synchronisation

Assume that because of lack of synchronisation what is avail-
able is a cyclic permutation of the cyclostationary mean vec-
tor —i.e. P0y0. Let us now consider its decomposition in

V and V⊥, and also consider a possible DC-offset. Now, we
can decompose the DC-offset term m0 in (3) as

m0 = C[M]m̃[M] + C〈P−M〉m̃〈P−M〉 (7)

where m̃ is a P×1 vector of constant elements m
Pc̄

, as can be
easily ascertained. So from (3), using (7) and Lemma 1,

P0y0 =C[M](P0[h
T
0 0P−M]T)[M]+

+ C〈P−M〉(P0[h
T
0 0P−M]T)〈P−M〉+

+ C[M]m̃[M] + C〈P−M〉m̃〈P−M〉.

(8)

Consider now the projection of P0y0 onto the V⊥ space.

So multiply both sides of (8) by 1
Pσ 2

c
CH
〈P−M〉:

1

Pσ2
c

CH
〈P−M〉P0y0 = (P0[h

T
0 0P−M]T)〈P−M〉 + m̃〈P−M〉. (9)

Now, two different cases are clearly distinguishable:

C1) For P0 = I the RHS of (9) reduces to m̃〈P−M〉, which is a

vector with all its components of equal value m
Pc̄

;

C2) For P0 6= I the first term of the RHS of (9) does not vanish
in general, and thus, we will not have a vector of equal
components.

The use of C1 and C2 for training sequence synchronisation
is formalised in the next proposition, and we define the oper-
ator J {v}= ‖v− v̄‖2, where v̄ = [v̄, ... , v̄]T and v̄ is simply
the mean of all the elements of v. Note that J {v} = 0 iff
all the elements of v are equal.

Proposition 1 Let P ≥ 2M + 1, hereafter known as the

strong constraint, then J
{

CH
〈P−M〉P0y0

}

= 0 iff P0 = I.



Training sequence synchronisation:

{Pl}
P
l=1 =set of all cyclic permutation matrices of P elements.

Compute Popt = arg min
Pl

{

J
{

CH
〈P−M〉Pl ŷ

(P0)
0

}}

Block synchronisation

Let {ŷ[l]}NP

l=0 be the set of estimates defined in section 3.2.

Compute ŷopt = arg min
ŷ[l]

{

J
{

CH
〈P−M〉ŷ[l]

}}

DC-offset estimation:

From (10), m̂ = c̄
σ2

c

1
P−M

[1, ... , 1
︸ ︷︷ ︸

P−M

]CH
〈P−M〉ŷopt

Channel estimation:

From (5), ĥ0 = 1
Pσ2

c
CH

[M](ŷopt − [m̂, ... , m̂
︸ ︷︷ ︸

P

]).

Table 1: Proposed method for DDST channel estimation in
the presence of a DC-offset when the transmitter and the re-
ceiver are not synchronised.

Proof: The proof uses the property of (9) (under case C1)
and consists in finding the conditions under which the prop-
erty under case C2 is always true for all P0, y0 and OCI

c(k). So let us work with the worst case scenario—i.e. when
all the M components of h0 are equal. So, if we require

(P0[h
T
0 0P−M]T)〈P−M〉 not to be a vector of equal components

for any P0 6= I and h0 6= 0T
M , then we require that its length is

larger that M—i.e. P−M > M. Q.E.D

Training sequence synchronisation is achieved as fol-
lows. The cyclic permutation PP0y0 of P0y0 minimising

the operator J
{

CH
〈P−M〉PP0y0

}

is the true cyclostation-

ary mean vector y0. This follows because by Proposition 1
PP0 = I, and thus PP0y0 = y0.

3.2 Block synchronisation

That we have selected the correct permutation of P0y0 does
not mean that in an actual application, under DDST, we have
the best possible estimate for y0. For this, we do not only

need to locate the start of a training sequence {c(k)}P−1
k=0 pe-

riod, but also the start of each received block {x(k)}N−1
k=0 . This

is due to the fact that in (1) DDST transmits an extra training
sequence e(k), that is dependent upon the data sent during
a block, so that when the cyclostationary mean is estimated,
all dependency on the actual data is removed. If data from
two different N-length blocks enters into the estimation of
y0 this independency property is lost and so (unlike ST) we
require block synchronisation. To introduce the block syn-
chronisation method, remember that y0 has to be estimated

using, as usual, time averages: ŷ0( j) = 1
NP

∑
NP−1
i=0 x(iP + j),

j = 0, 1, ... , P−1. But because of lack of synchronisation
this estimate will corresponds to an unknown permutation of

y0, i.e. P0ŷ0 := ŷ
(P0)
0 .

Popt, as given in the training sequence synchronisation
step of Table 1, tells us about the estimated indexes where the
training sequence periods start. Assuming that the first ele-

ment of Poptŷ
(P0)
0 was the dth element of ŷ

(P0)
0 , then each sam-

ple of x(k) that entered into the estimation of the dth element

of ŷ
(P0)
0 marks the start of a training sequence period. Denote

by q the smallest value of k (for x(k)) used in the estimation

of this dth element. Now compute ŷ[l] = 1
NP

∑
NP−1
i=0 [x(q+(i+

l)P), x(q +(i+ l)P + 1), ... , x(q +(i+ l)P + P−1)]T, 0 ≤

l ≤ NP. Note that ŷ[0] = Poptŷ
(P0)
0 , and for ŷ[1] the N-point

window has moved P samples to the right and so on. Only
the vector ŷopt (see Table 1) encompassing a full DDST block

will provide a cyclostationary mean vector independent of
the data sequence—i.e. with a reduced ‘data’ noise com-
pared with the rest of the ŷ[l] estimates—and so it will min-

imise the cost function, ŷopt = arg min
ŷ[l]

{

J
{

CH
〈P−M〉ŷ[l]

}}

,

as in Table 1.

3.3 DC-offset and channel estimation

Once the best possible estimate for y0 is known, the DC-
offset m can be computed using the property of (9) under
case C1,

m =
c̄

σ2
c

1

P−M
[1, ... , 1
︸ ︷︷ ︸

P−M

]CH
〈P−M〉y0. (10)

Thus, m is a normalised mean of the elements of CH
〈P−M〉y0,

where the normalisation factor is the quotient of the mean (c̄)
and the power (σ2

c ) of the training sequence. The implemen-
tation of this part is shown in Table 1.

Finally, after synchronisation and DC-offset estimation,
the channel can then be estimated as also indicated in Table 1.

3.4 Important remark

The strong constraint (in Proposition 1) assumes that the
channel order M − 1 is known. If the channel order is over-
estimated, h0 will have extra zero taps at the tails. This will
allow operator J to have more than one possible solution
following Proposition 1. But all the provided solutions are
related by a linear shift and the only effect on equalisation is

a delay of z−∆, for integer ∆. The same can happen in the
practical implementation if the elements in the tails of the
channel vector are finite but small, even if M is known.

4. SIMULATION

Three-tap Rayleigh fading channels were simulated. The
channel coefficients were complex Gaussian, i.i.d. with unit
variance. The average energy of the channel was set to unity.
The data was a BPSK sequence, to which an OCI training se-
quence (see [2]) was added before transmission. As regards

(1), the training to information power ratio (TIR= σ 2
c

σ 2
(b+e)

) was

set to −6.9798 dB, P = 7 and N = 399 samples. These are the
same values as used in [5]. In each block a cyclic prefix was
added to ensure full independency of the DDST y0 estimates
with respect to the information sequence b(k). We generated
NB = 300 blocks at the transmitter, and while only N samples
were used for channel estimation, all the blocks were used for
BER computation. A deterministic DC-offset (m) was added
at the channel output, together with zero-mean white Gaus-
sian noise. The value of the DC-offset was determined by
the DC-offset to signal AC-component (DCAC) power ratio
m2/E

[
|x(k)−n(k)−m|2

]
as defined in [1]. In these simu-

lations this was set to DCAC= 0.1. At each realisation, a
random synchronisation offset between 0 and N + P−1 was
introduced between transmitter and receiver, so we could be
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Figure 1: MSE of channel estimates, as a function of the
SNR, computed following Table 1. The identification delay
(∆) has also been considered. The channel estimates assum-
ing known DC-offset and perfect synchronisation (for both
ST and DDST) are included for comparison purposes.

at any sample index within the first block. After channel
estimation, an MMSE equaliser (based on the channel esti-
mates) of length 11 and optimum delay was used to compute
the BER. 1000 realisations were averaged. Now, as already
mentioned at the end of section 3.3, the estimated channel
may incur a z−∆ delay element, especially when the chan-
nel coefficients at the tails are very small. This identifica-
tion delay, which in practise has no major consequences, can
worsen the simulated MSE and BER, distorting the perfor-
mance analysis of the method. To avoid this, the identifica-
tion delay was computed comparing the equalised symbols
with the true ones affected by different delays to compute
the BER. Then, the delay giving the smallest BER is chosen
as the identification delay. The problem of the identification
delay was reported in [5] as well.

The MSE of the channel estimates obtained with the pro-
posed method is presented in figure 1. The MSE obtained
from the ST and DDST methods assuming perfect synchro-
nisation and known DC-offset are also included for compar-
ison. As shown in [4], DDST delivers much better chan-
nel estimates than ST. From figure 1, we can say that this is
even true if synchronisation and DC-offset for DDST are un-
known, and have to be estimated via the proposed method.
Note from figure 1 that DDST with estimated synchronisa-
tion is closer to DDST with perfect synchronisation than it is
to ST with perfect synchronisation.

Similar conclusions can be drawn from the BER graph
in figure 2. It is important to notice that the BER can be
reduced if the periodic sequence e(k) in (1), inherent to
DDST, is now estimated and removed as reported in [4].
To do this, the output x(k) is equalised to give beq(k), and

then a hard decision is carried out to give b
(0)
hd (k). Define

e(0)( j) = − 1
NP

∑
NP−1
i=0 b

(0)
hd (iP+ j), for j = 0, ... , P−1. Sub-

tract this from beq(k) and then follow with a hard decision to

yield b
(1)
hd (k). This is called an iteration in the equalisation

(see figure 2). Note that beq(k) is unchanged throughout this
process.
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Figure 2: BER versus SNR obtained using the channel esti-
mates from Table 1 to construct a MMSE equaliser.

5. CONCLUSIONS

A method for synchronisation and DC-offset estimation for
channel estimation has been presented under the new DDST
scheme, and this is the first such proposal. To exploit the full
potential of the DDST method, both training sequence and
block synchronisation are required. The presented method is
based on projection operators. The conditions for synchro-
nisation, DC-offset removal and channel estimation are pre-
sented. The simulations show that the performance, in terms
of MSE and BER, of the overall synchronisation method, is
similar to that of the DDST method, when we know exactly
the DC-offset and have perfect synchronisation.
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