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ABSTRACT

In this paper we derive a new design of the Convex Vari-
able Step-Size (CVSS) algorithm, based on measurements
obtained with LMS algorithm. Computer simulations are
provided to support the proposed approach.

1. INTRODUCTION

In recent years there has been increasing interest in adaptive
filters for various signal processing and communications ap-
plications. The most widely used adaptive algorithm is the
Least-Mean-Square (LMS), originally proposed and devel-
oped for engineering applications by Widrow and Hoff [1].
Many researchers have studied the convergence and tracking
performance of the LMS algorithm. It has been noticed that
a compromise must be done between the convergence speed
and the steady-state error. Much effort has been devoted to
this issue, and to solve this problem many algorithms have
been developed. A popular approach is based on using large
step-sizes values when the algorithm is far from optimal so-
lution, and small step-size values near the optimum. As a
consequence of this interest there is available a large litera-
ture on variable step-size methods.

An overall weakness of the variable step-size algorithms
is that the convexity of the cost function cannot be anymore
guaranteed, except [2] where the convexity of cost func-
tion for such a variable step-size method has been proved.
Consequently CVSS (Convex Variable Step-Size) has been
recommended for acoustic echo cancelation [3] applications
for better tracking capabilities and easier implementation on
small and medium finite lengths DSPs. As a possible draw-
back, the CVSS algorithm can perform worse than some vari-
able step-size algorithms, if the period when LMF (Least
Mean Fourth) acts is very long. Also the design presented in
[2] depends on the choice of one only parameter d , used to
differentiate the extra-period LMF acts from the difference
between the adaptation periods of the two LMS. As in the
case of other algorithms, the tuning of this parameter may be
a sensitive issue in implementation. The major contribution
of this paper is the direct formulas for tuning the step-size
parameters. However, the improvement in convergence and
error due to the new design seems not very significant.

The paper is organized as follows. First we recall VSS
(Variable Step-Size) algorithm (Section 2.1) as standard vari-
able step-size method [4]. Then we mention main properties
of the CVSS algorithm (Section 2.2) to have consistent nota-
tions with VSS. Several common aspects of VSS and CVSS
algorithms are enlighten, leading to a new design of CVSS

algorithm (Section 3). Computer simulations are also pro-
vided in Section 4.

2. LMS, VSS AND CVSS ALGORITHMS

We consider an adaptive FIR filter, which is trying to make
a copy ŷ of the echo-path output y, using the signal x as an
input, based upon a measurement of the signal that remains
after subtracting ŷ from the received signal y + f , where f
is the far-end signal. We denote by ĥ the estimated filter
coefficients and the vectors’ length is N. The LMS algorithm
results:

ĥ(k +1) = ĥ(k)+ m(k)e(k)x(k), (1)
where here m(k) = m is the fixed step-size of the LMS algo-
rithm. Here we use LMS recursion without factor 2 in the
right-hand side of (1) to be consistent with VSS recursion in
[4].

Unlike LMS, in variable step-size methods we have three
regions; in two of them LMS acts with different gradients
given by step-sizes mmax and mmin, and the middle one is
where a certain step-size update formula is applied. This last
region will differentiate any algorithm from other variable
step-size methods.

2.1 VSS algorithm

The Kwong and Johnston recursion of their variable-step size
(VSS) algorithm [4] is (1), with:

m(k +1) =

{ mmax m ′(k +1) > mmax
mmin m ′(k +1) < mmin
m ′(k +1) otherwise

(2)

where
m ′(k +1) = am ′(k)+ ge2(k). (3)

The parameter a is usually 0.97 and g may be chosen in
conjunction with a to meet the misadjustment requirements.
Also mmin will be near the value of m for the fixed step size
LMS. The following approximate expression for the misad-
justment, valid for small misadjustment in the stationary case
has been provided in [4]:

M =
1−

[

1−2 (3−a)gxmin
1−a2 tr(R)

]1/2

1+
[

1−2 (3−a)gxmin
1−a2 tr(R)

]1/2 (4)

where R = E[x(k)xt(k)] and xmin is the additive noise vari-
ance.
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Figure 1: Modeling the step-size computation.

2.2 CVSS algorithm

The convex variable step-size algorithm is resulting from a
combination of LMS and LMF (Least Mean Fourth) cost
functions. As in other variable step-size methods we have
three regions; in two of them LMS acts with different gra-
dients, and the middle one is where the LMF is applied.
This last region and the selection of the constants differen-
tiate CVSS algorithm from VSS technique. To comply with
(1) recursion, the CVSS update formula for step-size is the
following:

m(k) =















mmax, if e2(k) > mmax
b ,

mmin, if e2(k) < mmin
b ,

be2(k), otherwise.

It is easy to see that m(k) is a continuous strictly increasing
function, which gives a gradient of a convex cost function. It
should also be noted that the design rests in only one parame-
ter. Since the parameter a of VSS algorithm is usually fixed
to 0.97, we have the same situation as in the case of VSS,
i.e. one parameter to be determined: b for CVSS and g for
VSS. It is of interest to determine whether we can establish
any relationship between these two parameters.

3. JOINT VSS AND CVSS IMPLEMENTATION

Actually what we are looking for is the instant when we can
skip from LMS to LMF algorithm; alternatively, we would
like to know the values of the error when LMS should act
with mmax and mmin, respectively. By substituting mmax, mmin
and b in (3) we obtain:

mmax = ammax + g mmax
b ;

mmin = ammin + g mmin
b ,

(5)

which both give:
b =

g
1−a

. (6)

On the other hand, one can see the step-size computation
as it is modeled in Fig. 1, as cascade of linear filter and a
threshold system. In both cases the threshold system is given
by

m(k) =

{ mmax if m ′(k +1) > mmax
mmin if m ′(k +1) < mmin
m ′(k +1) otherwise

where the linear filters have the following input-output rela-
tionships:
• For VSS: m ′(k +1) = am ′(k)+ ge2(k);
• For CVSS: m ′(k +1) = be2(k).

Consequently their system functions are given by:
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Figure 2: Log-magnitude responses (in dB) for the two linear
filters HV SS (g = 1−a) and HCV SS (b = 1).

• For VSS: HV SS(z) = g
z−a ;

• For CVSS: HCV SS(z) = b/z.
It follows the frequency response magnitudes:

• For VSS: |HV SS(w)| = g√
1+a2−2a cosw

;

• For CVSS: |HCV SS(w)| = b .
It should be noted that condition (6) leads to

|HV SS(0)| = |HCV SS(0)|,

which assures that step-size expectation is identical for both
algorithms when the error density spectrum is the same.
However, their magnitude responses differ (Fig. 2). We can
see that corresponding to VSS there is a linear filter HV SS
which characteristic is low-pass and narrow band. Con-
sequently the averaging operation on step-size m ′(k) will
provide a smoothed step-size m(k), and thus improving the
instantaneous behavior of the stochastic gradient. For the
CVSS this is not anymore needed, as the convexity of cost
function is guaranteed. However, the VSS and CVSS should
have different properties according to the spectrum of the sig-
nals involved.

We also note that
∫ p

−p
|HV SS(w)|dw =

∫ p

−p

gdw√
1+a2 −2a cosw

(7)

is equal with 4gK(a), where K(p) is the complete elliptic
integral [5]:

K(p) =
∫ p/2

0

dx
√

1− p2 sin2 x
.

In addition, we provide a sample of complete integral val-
ues of K(p) in Table 1 [6]. Although a has been selected
since it was working well in simulations, we remark also that
K(0.97) fits p best of all.

Now let be a uniform Se(w) = s 2
e /(2p) power spectral

density of the error. Because the input of the linear filters



p K(p) p K (p)
1 ¥ 0.95 2.90833

0.99 3.69563 0.94 2.82078
0.98 3.35414 0.93 2.74707
0.97 3.15587 0.92 2.68355
0.96 3.01611 0.91 2.62777

Table 1: Values of complete elliptic integral K(p).

H(w) is the square of the error, then the step-size variance is
equal with bs 2

e for CVSS and it can be approximated with
2gs 2

e for VSS, which is much smaller, whenever (6) is valid.
There is still one sensitive problem, when we want to im-

plement CVSS: How to find parameter b , without prior im-
plementation of VSS? Taking into account that g is usually
very small, we can neglect the term inside the brackets of the
denominator of (4). Moreover, we can use the approximation√

1− x ≈ 1− x/2, for x ¿ 1. Thus we can get

M ≈ (3−a)gxmin
1−a2 tr(R) =

3−a
1+a

xmintr(R)
g

1−a
.

If (6) is valid and a = 0.97 we get:

M ≈ 1.03bxmin tr(R). (8)

On the other hand, in the case of LMS algorithm, when the
step-size parameter m is small enough, the misadjustment
varies linearly with m [7]:

M ≈ m
2 tr(R). (9)

By combining (8) and (9), we can easily compute parameter
b of CVSS algorithm based on measurements obtained with
LMS algorithm:

bcvss ≈
mLMS

2.06xmin
. (10)

Similarly, we get for VSS algorithm:

gvss ≈ 0.0146 mLMS

xmin
. (11)

4. SIMULATIONS

For the beginning we used the data echo cancelation frame-
work to test our achievements. The near-end sequence is
modeled by a non-Gaussian random bipolar sequence from
the set {1,−1}. The far-end signal is generated by an in-
dependent random bipolar sequence from the set {a,−a},
where a is the attenuation of the far-end signal. The per-
formance measure is the normalized form of the tap-error
vector:

p(k) =
‖ĥ(k)−h(k)‖

‖h(k)‖ .

Two types of echo path have been used. The first one con-
sists of channels that are single pole single zero digital fil-
ters, with the impulse response series truncated [8]. The
impulse response of the echo path is of the form h(n) =
0.80025 j, j = 0, . . . ,31. The second type of echo path model
is numerically generated as in [8], by sampling a diagram
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Figure 3: Impulse responses for the two channel models: (i)
the single pole single zero digital filter; (ii) the real hybrid.
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Figure 4: Learning curves for old and new design approaches
of VSS and CVSS, when the echo-path is the real hybrid.

of an actual telephone network connection. The impulse re-
sponses for the first type channel and for the second echo-
path (real hybrid) are shown in Fig. 3. First we recon-
sider example presented in [2], where for real hybrid two
type of simulations have been shown. For adB = −15 with
the new notations, the maximum and minimum step-sizes are
equal with 0.02 and respectively 0.0055. Now we shall il-
lustrate how CVSS and VSS algorithms work with the for-
mer and the new design approach. In the former approach
g = 48 ·10−5 as recommended in [4], and b = 0.022. In the
new approach b = 0.0055/[2.06 · (10−3/4)2] = 0.0844 and
g = 0.0146 ·0.0055/(10−3/4)2 = 0.0025. The outcomes pre-
sented in Fig. 4 have been obtained after running the algo-
rithms for 100 times and averaged. It is now clear that for sta-
tionary case, for this echo-path and for the signals involved,
the new design approach gives better results.

The second set of simulations presents the behavior of
the VSS and CVSS algorithms when an unknown systems
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Figure 5: Performance of old and new design approaches of
VSS algorithm for a sign change in coefficients.
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Figure 6: Performance of old and new design approaches of
CVSS algorithm for a sign change in coefficients.

coefficients experience a sign change at iteration k = 2000.
We can see that the new design approach slightly improves
the properties of both VSS and CVSS algorithms.

The third set of simulations illustrates how the VSS and
CVSS algorithms works with the first echo path filter. As
in this case b and g have close value (bCV SS old = 0.025,
bCV SS new = 0.016, gV SS old = 7.61 · 10−4, gV SS new = 4.8 ·
10−4), the algorithms behave quite the same.

5. CONCLUSIONS

In this paper we have presented a new design approach for
both VSS and CVSS algorithms. As result we have obtained
straight relationships for tuning the parameters directly from
LMS step-size and additive noise variance. It follows that
one can run LMS and then can find the parameters for both
VSS and CVSS. Though one may claim that (10) and (11)
are rather rough approximations, our simulations show that
they give promising results.
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Figure 7: Learning curves for old and new design approaches
of VSS and CVSS, when the echo-path is the single pole
single zero digital filter.

We recall that in the case of CVSS algorithm the analysis
does not arise major difficulties. Moreover, as we have just
seen, the CVSS has a simple implementation. The amount
of computation load is reduced or is identical in compari-
son with other variable step-size methods. We do not need
steps to be taken to anticipate the step-sizes from exceed-
ing their maximum and minimum limits; the same compari-
son for error seems effortless. Consequently CVSS is an at-
tractive technique, especially for an easy implementation on
small and medium finite lengths DSPs, where VSS (or other
variable step-size methods) may have problems, due to the
recursive computation of the step-size.
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