
DESIGN OF INTEGER FILTERS FOR TRANSMULTIPLEXER 
PERFECT RECONSTRUCTION 

Bartosz Ziółko*, Mariusz Ziółko** , and Michał Nowak*** 

*Faculty of Electrical Engineering, Automatics, Computer Science and Electronics 
**Department of Electronics, ***Faculty of Applied Mathematics 

AGH University of Science and Technology 
al. Mickiewicza 30, 30-059 Kraków, Poland 

phone: + (48-12) 6173048, fax: + (48-12) 6332398, {bziolko, ziolko}@agh.edu.pl, manowak@wms.mat.agh.edu.pl

ABSTRACT 
A new and efficient method of designing the 
transmultiplexer filters is presented. The bilinear equations 
posed for the FIR filters are solved to achieve perfect 
reconstruction. For a given combining filter bank a 
separation filter bank can be developed by solving a set of 
algebraic equations. Some examples of a two-channel and 
four-channel transmultiplexer system are provided to 
illustrate the method of filter bank designing. Due to the 
incorporation of integer filters a perfect reconstruction was 
realized and crosstalk was completely eliminated not only 
theoretically but also in practice. Such transmultiplexers can 
be applied to coded signals transmission. It is pointed that 
the orthogonal filters can be obtained as well. 

1. INTRODUCTION 

Frequency-Division Multiplexing (FDM) is an important 
method of combining signals of several users into one signal 
for the transmission by a single channel in currently used 
telecommunications systems. However, FDM has some 
disadvantages, one of the main problems is a very strong 
dependence of users data and quality on one frequency 
subband. Interferences and noises occur in a narrow band, 
especially in radio communication. It implies a break of 
transmission for one or two users. It is much more 
convenient for telecommunications companies to spread that 
disturbances onto many users in the way that there will be 
no breaks and only a small loss of quality. Such idea was 
implemented in FDM by frequency hopping, but the new 
method with users bands independent from a single 
frequency is still needed. Probably a currently introduced 
method – the Code Division Multiple-Access (CDMA) [6] 
system has fulfilled that important expectation. The 
frequency of the transmitted signal is then made to vary 
according to a defined pattern (code). The spectrum of each 
user's signal is spread over the whole channel bandwidth. It 
can be only intercepted by a receiver whose frequency 
response is programmed with the same code. The 
narrowband data users signal is multiplied by a spreading 
signal - a very large bandwidth signal. All users in a CDMA 
system may transmit simultaneously by using the same 
carrier frequency. Different users’ spreading signals are 
approximately orthogonal to each other. The receiver 

performs a correlation to detect data addressed to a given 
user, while signals from all the other users appear as noise. 
The receiver needs the spreading signal used in the 
transmitter for detecting. The system works with 
uncoordinated transmission - users have no knowledge of 
the other users [7]. 

 Transmultiplexers [4] have the same advantage, called 
generally the "spread spectrum". According to their 
mathematical models, transmultiplexers are much more 
general systems. All other methods of multiple-access are 
certain realizations of transmultiplexers with suitable banks 
of filters chosen in a specific way. The greatest challenge is 
to find the required filters. This is not an easy task although 
the necessary conditions given in the z-domain are well 
known [5]. An innovative and efficient method of designing 
such filters is suggested in this paper. 

In many applications there has been a growing interest in 
reversible integer-to-integer filter banks. Signals are then 
invertible in finite-precision arithmetic and map integers to 
integers. Due to this property, transmultiplexers of this type 
have additional advantages: they can be applied to 
transmitting lossless compressed signals, minimal memory 
can be used and complexity of computations can be low. Due 
to properties like these, there is a clear need to consider 
reversible integer-to-integer filter banks. A particularly 
interesting case appears when filters are orthogonal. 
Orthogonality is the fundamental concept in the design of 
many communication systems [1]. 

2. TRANSMULTIPLEXERS 

Each transmultiplexer combines several signals into a single 
signal. The transmultiplexers were originally studied in the 
context of converting Time Division Multiplexing (TDM) 
into FDM. Their main application is for simultaneous 
transmission of several data signals through a single channel. 

Fig.1 shows the classical schematic diagram of the four-
channel transmultiplexer. At the transmitter, the M input 
signals were upsampled, filtered and summed to obtain a 
composite signal. This composite signal can be transmitted 
over a single transmission channel. At the receiver end, the 
composite signal is relayed to the four channels of the 
separation part, where the signal is filtered and downsampled 
to recover the original input signals. The system presented in 



Fig.1 consists of linear and time-invariant elements. This 
facilitates the construction of a mathematical model for such 
systems.  

The basic idea is the reversibility of all procedures of 
transmultiplexation in such a way that all output signals 
could be recovered as precisely as possible. For the well-
designed transmultiplexers, the output signal out

is  
approximates the input signal in

is , where i  is a signal 
number, { }Mi ,,2,1 K∈ . The main task in a transmultiplexer 
system design is to develop an appropriate separation filter 
bank such that the output signals can resemble the original 
input signals as much as possible. A transmultiplexer 
achieves perfect reconstruction if out

is  is only a delayed 
version of in

is , namely if there exist a positive integer τ  such 
that 

)()( inout τ−= nsns ii . (1)    
The dependence of output out

is  from inputs in
ks , where 

{ }Mki ,,2,1, L∈  is described [4] in the z-transform domain 
by equation 
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where Mj
M ew /2 ⋅−= π  and )(zsi , )(zH c , )(zH s  stand for 

the z-spectrum of signal )(nsi , combining and separation 
transfer functions, respectively. It means that each output 
signal depends on all inputs signals. A key point is that the 
constituent signals should be recoverable from the combined 
signal. To fulfill the perfect reconstruction condition (1), we 
obtain a set of 2M equations 
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from (2), where ik ,δ  is a Kronecker function. In that way 
necessary and sufficient conditions for a crosstalk-free 
transmultiplexer were obtained [5]. 
 
 

 
Figure 1. A scheme of 4-channel transmultiplexer. 

 
 
 Under assumption that all filters are FIR type of order I 
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where )(lh s
i  means the l-th coefficient of filter )(zH s

i , 

{ }Mi ,,2,1 K∈ . Similarly )( lMnhc
k −  stands for the 

coefficients of the )(zH c
k  filter. The assumption that all 

filters are of order I  gives us restriction of sum (4), i.e. it 
gives an additional condition IlMn ≤−≤0 , which is 
equivalent to },min{},0max{ IMnlIMn ≤≤− . Second 
inequality is used to calculate the summation range of 
equations (4). 
 Equations (4) are fulfilled for all Cz ∈  if and only if 
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for ]/2[,,1,0 MIn K= , where ]/2[ MI  means an integer 
part of 2I/M. Conditions (5) can be written in matrix notation 
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and m and l are numbers of rows and columns of matrices 
nA , respectively. Elements of these matrices are given by 

formula 
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For each pair { }Mki ,,2,1, L∈  of filter numbers, condition 
(6) gives [ ] 1/2 +MI  equations. Therefore it results in the 
system of [ ]( )1/22 +MIM  equations. 
   Now, let us consider the specific case when filters have low 
orders and a transmultiplexer system has delay 1=τ . Let the 
orders of all combining filters be equal to K and let K depend 
on the number of channels in the following way K ≤ M - 1. 
Let the order of all separation filters be L ≤ M and moreover 

0)0( =s
ih  for all Mi ≤≤1 . Let us introduce two matrices 
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which consist of combining and separation filter coefficients, 
respectively. Both matrices 

MMsc GG ×ℜ∈,  
are square and their dimensions depend on number of 
channels. Under these assumptions, conditions (6) can be 
written in a simple form 

EGG sc =        (9) 



where E is a unitary matrix and both matrices cG  and sG  
must be nonsingular. Condition (9) is simple but its 
mathematical justification is not trivial and will be published 
elsewhere. 
    Condition (9) suggests the method for finding filter 
coefficients: 
� choose an arbitrary matrix (7) (i.e. coefficients of 

composition filters) 
� compute the coefficients of separation filters 

1)( −= cs GG .           (10) 
 Until now, for the practical applications, the FIR filter 
bank was frequently approximated via the least-squares 
method [2,3,8]. Practically, the coefficients of the filters had 
finite precision occurrence, so some errors were not 
avoidable. Obviously, our proposed method performs better 
than the least-squares method. The strict solution can be 
found instead of seeking the approximate solution by 
iterative method. It is possible to provide all calculations 
without divisions and using the integer numbers only to omit 
the rounding errors. For this case it is convenient to use such 
filters that 

1detdet == sc GG . 
One of such the simplest realizations has form 
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where ikc  are arbitrary chosen integer numbers and 
{ }Mki ,,2,1, L∈ . Afterwards the values of separation filters 

s
lH  coefficients must be computed according to (10).  

 It is possible to proceed in an opposite direction as well. 
We can assume the coefficients of separation filters (i.e. 
matrix (8)) and its inverse matrix will constitute matrix (7). 
In such way we obtain the coefficients of combining filters. 
 An interesting case appears under an additional 
assumption that separation filters are orthogonal in such 
sense that 
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To fulfill these requirements, filter coefficients can acquire 
for example the Walsh or Haar function values. That case 
provides a rule 

Tsc GG )(=            (11) 
to design the combining filters. A very simple condition 
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c
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results from (11) taking into account (7) and (8). 

3. EXAMPLES 

Let us consider two simple examples: a transmultiplexer 
which consists of two channels only and a transmultiplexer 
which consists of four channels. For the first case let us 
assume the FIR combining filters 
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Next, according to (10) we compute the coefficients of 
separation filters 
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    For the case of four channels, let us assume the following 
values of FIR combining filters 
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Simple computations, according to (10) give us the 
coefficient of separation filters 
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To obtain the orthogonal separation filters let us use the 
Walsh functions. For the case of four channels we can 
assume 























−
−=























−

−=























−
−

=























=

1
1
1

1
0

2
1,

1
1
1

1
0

2
1,

1
1

1
1
0

2
1,

1
1
1
1
0

2
1

4321
ssss hhhh

 

and it appears that both matrices, (7) and (8), are not only 
orthogonal but symmetrical as well. From 
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we obtain immediately the orthogonal combining filters 
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The characteristics of these filters are presented in Fig. 2 and 
Fig. 3. For each channel the amplitude characteristics of 
composition and separation filters (see Fig.2) are exactly the 
same but their phase characteristics are different (see Fig.3). 
These properties result from the relationships 

fjcs efHfH π2)()( −=  

obtained for the filters in the first and the forth channel and 
fjcs efHfH π2)()( −−=  

obtained for the second and the third channel, where 
]5.0,0[∈f  is a normalized frequency. 
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Figure 2. Amplitude characteristics of orthogonal filters: 
composition (on the left) and separation (on the right). 
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Figure 3. Phase characteristics of orthogonal filters. 

 
The presented above examples depict the extraordinary 

simplicity of filters, which can be obtained while using the 
above described algorithm. The second example presents 
filters which do not need multiplications. Their coefficients 
are equal to 1−  or 0 or 1 only. The third example has such 
property as well, but in that case we obtain the amplified 
output signals. 

4. CONCLUSIONS 

We have to stress the meaning of the usage of integer filters. 
The previous methods created real values coefficients. The 
perfect reconstruction condition was fulfilled only 
theoretically because of the finite precision of digital 
equipment and non-integer values of filter coefficient. 
Practically, output signals were a little different than input 
ones. For sending uncoded images or audio signals such 
solutions were satisfying. On the other hand, software files or 
coded multimedia data like MPEG files even with very slight 
changes are damaged and not possible to use. For example, if 
the first frame of MPEG video sequence is wrong the next 
hundred of them can be damaged as well because the first 
one was the Intra frame. Many other frames use it as the 

frame of reference. The problem of any occurring error in 
software files is even more crucial. 

The motivation for a developing new designing method 
for transmultiplexer systems has resulted from the fact that 
quantization errors in digital filtering for real numbers are 
inevitable. It is trivial that imperfect filters cause the 
crosstalk phenomenon. The crosstalk in transmultiplexer 
systems can be completely eliminated by the properly 
designed filters. An important improvement is possible if a 
direct design approach based on integer number calculations 
is applied. If integer filters are incorporated in filter banks 
then not only theoretically but also in practice the perfect 
reconstruction conditions are applied to input signals when 
they have fixed complexity. Only simple and fast 
calculations like upsampling, downsampling, integer 
filtering and signal summing are carried out on-line in such 
transmultiplexer systems. 
 It is an important observation that the perfect reconstruc-
tion can be obtained without assumption that filters have the 
separate frequency bands. Moreover, if we compare (see 
Fig.2) filters cH 2  and cH 4 , it is noticeable that filter ampli-
tude characteristics can be similar. 
 The considerations presented in this paper began from the 
assumptions that the filter orders are low and depend on the 
number of channels. It is possible to design the transmulti-
plexer system equipped with filters of higher orders but the 
mathematical conditions are then more complicated and it is 
difficult to form the algorithm of filters designing. 
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