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ABSTRACT

A general method for user dedicated downlink channel estimation
in WCDMA receivers is addressed, particularly suited in the pres-
ence of dedicated channel transmit beamforming. A three-step ded-
icated channel estimation procedure is derived which exploits all
the existing pilot sequences as well as the structured dynamics of
the channel. In the first step, least squares (LS) estimates of the
channels associated with dedicated and common pilots are built. In
the second step, an improved unbiased minimum mean square error
(UMMSE) estimate of the dedicated channel is obtained by opti-
mally combining the initial LS estimates exploiting the correlation
between dedicated and common pilot channels. In the last step, the
improved dedicated channel estimate is further refined via Kalman
filtering by exploiting the channel temporal correlation.

1. INTRODUCTION

The UMTS standard [1] user dedicated downlink physical channel
(DPCH) consists of dedicated physical control channel (DPCCH),
carrying user dedicated pilots, time multiplexed with the dedicated
physical data channel (DPDCH) carrying dedicated pilots. In ad-
dition, common pilots are continuously provided over the common
pilot channel (CPICH). Most channel estimation techniques pro-
posed for WCDMA receivers are based on either the DPCCH (see
e.g. [3, 4] and references therein), or on the CPICH (see e.g [5]).
However, on the one hand, the accuracy of channel estimation ap-
proaches relying only on the DPCCH is limited by the reduced num-
ber of dedicated pilots per slot and by the lack of pilots during the
DPDCH period that prevents effective tracking of fast fading chan-
nels. On the other hand, classical channel estimation approaches
based on the CPICH can better adapt to fast fading conditions, but
they are not suited for dedicated channel estimation in the presence
of dedicated transmit beamforming. Both approaches remain sub-
optimal though, due to the fact that they neglect the shared structure
by the common and the dedicated propagation channels. There al-
ready exist some works for path-wise dedicated channel estimation
which make use of both dedicated and common pilots [6], [7], un-
der the assumption of perfect a priori knowledge of the path delays.
Moreover they implicitly assume the channel associated with the
DPCH to be identical to the one associated with the CPICH. How-
ever, as envisaged in the Release 5 of the UMTS standard, this as-
sumption does not hold in the case when beamforming is employed
for DPCH transmission. Indeed user dedicated transmit beamform-
ing affects only the DPCH transmission while the CPICH is evenly
broadcasted to all users in the cell. Hence, when dedicated beam-
forming is present one would be tempted to conclude that CPICH
can no longer be used for dedicated channel estimation, while the
dedicated pilots can still be exploited yet with all the previously de-
scribed limitations. Actually in order to exploit the common pilots
as well, the knowledge of the transmit beamforming parameters,
i.e. the beamforming weight vector, antenna array responses corre-
sponding to the excited angles and their related statistics should be
known at the receiver. Furthermore, even in the absence of trans-
mit beamforming, the offset between the transmit powers assigned
to the DPCCH and CPICH needs to be estimated in order to prop-

erly form a combined estimate of the actual dedicated channel. In
general, even in the presence of dedicated beamforming the DPCH
and CPICH associated propagation channels are correlated to a cer-
tain extent, as it has been shown by field test measurements. A
general dedicated channel estimation technique which optimally ex-
ploits both common and dedicated pilots based on a generic CPICH-
DPCH channel correlation model was introduced for the first time in
[2]. In addition to the correlation between dedicated and common
channels, there is also the channel temporal correlation governed
by the Doppler spread, which can be exploited to improve the chan-
nel estimation accuracy. To this end, by fitting the channel dynam-
ics to an autoregressive model of sufficient order, Wiener filtering
or Kalman filtering can be applied to refine the previously block-
wise obtained estimates. Here we consider causal Kalman filtering
which, as it is well known, corresponds to the causal Wiener filter-
ing in the steady state. In this paper, we approach the problem of
time-varying dedicated channel estimation by optimally combining
all the known sources of information, i.e by exploiting the temporal
and cross-correlations of common and dedicated pilots. Further-
more no a priori knowledge of path delays and the beamforming
parameters is assumed. The performances are assessed in terms of
normalized mean square error (NMSE) of the dedicated channel es-
timate via both analytical and simulation results. The impact of the
channel estimation errors on the RAKE receiver performances are
also addressed in terms of output signal-to-interference-plus-noise
ratio (SINR).

2. CHANNEL AND SYSTEM MODEL

We assume the time-varying continuous time channels associated
with dedicated and common pilots, hd(t, t ) and hc(t, t ) respec-
tively, to obey the wide sense stationary uncorrelated scattering
(WSS-US) model [8]

hd(t, t ) =
P−1

å
p=0

cd,p(t)y (t − t p)

hc(t, t ) =
P−1

å
p=0

cc,p(t)y (t − t p)
(1)

where y (t ) represents the pulse-shape filter, P denotes the num-
ber of significant paths, t p represents the p-th path delay, cd,p(t)
and cc,p(t) are time-varying complex channel coefficients associ-
ated with the p-th path of the dedicated and common channel re-
spectively. In many practical circumstances, the two coefficients
cd,p(t) and cc,p(t) result to be fairly highly correlated even in the
presence of dedicated downlink beamforming. Notice that in (1)
the coefficients cd,p(t) for p = 0, ...P−1 account also for the com-
plete cascade of the beamforming weight vector, the antenna array
response on the excited angles, as well as for the actual propaga-
tion channel between the transmitter and the receiver. The receiver
is assumed to sample M times per chip period the low-pass filtered
received baseband signal. Stacking the M samples per chip period
in vectors, the discrete time finite impulse response (FIR) represen-
tation of both common and dedicated channels at chip rate takes the



form hhhl = [h1,l . . .hM,l ]T , which represents the vector of the samples
of the overall channel, including the pulse shape, the propagation
channel, the antialiasing receiver filter and, when applicable, the
beamforming weighting. The superscript (·)T denotes the transpose
operator. Assuming the overall channel to have a delay spread of N
chip periods, the dedicated and common channel impulse responses
take the form hhh(n) = YYY ccc(n) where hhh = [hhhT

1 , . . . ,hhhT
N ]T ∈ C MN×1,

ccc(n) = [c1(n) . . .cP(n)]T ∈ C P×1 are the complex path amplitudes
and the temporal index n relates to the time instant at which the
time-varying channel is observed. The assumption of fixed delays
t p’s over the observation window, yields to a constant pulse-shape
convolution matrix YYY ∈RMN×P given by

YYY = YYY (t 1, · · · , t P) = [yyy (t 1), . . . , yyy (t P)]

where yyy (t p) represents the sampled version of the pulse shape fil-
ter impulse response delayed by t p. The complex path amplitudes
variations are modeled as an autoregressive (AR) processes of or-
der sufficiently high to characterize the Doppler spectrum. Match-
ing only the channel bandwidth with the Doppler spread leads to a
first-order AR(1) model of the form

ccc(n) = r ccc(n−1)+
√

1−|r |2D ccc(n) =

√
1−|r |2

1− r q−1 D ccc(n)

so that, YYY being constant over the observation time interval, we
obtain

hhh(n) = r hhh(n−1)+
√

1−|r |2D hhh(n) =

√
1−|r |2

1− r q−1 D hhh(n) (2)

where q−1 denotes the delay operator such that q−1y(n) = y(n−1)
and r represents the AR process remembering factor. Since the
Doppler spread is assumed to be the same for both channels (1),
the model (2) applies to both hhhd(n) and hhhc(n). The variance of k-
th component hc,k(n) of hhhc(n) is s 2

hc,k
= s 2

D hc,k
= yyy kDDDcyyy H

k where

yyy k denotes the k-th line of YYY and DDDc = diag(s 2
D c1

, . . . , s 2
D cc,P

).

Notice that s 2
cc,p

= s 2
D cc,p

. Similarly the variance of k-th compo-

nent hd,k(n) of hhhd(n), is s 2
hd,k

= s 2
D hd,k

= yyy kDDDd yyy H
k where DDDd =

diag(s 2
D cd,1

, . . . , s 2
D cd,P

).

3. THREE STEP DEDICATED CHANNEL ESTIMATION
PROCEDURE

The proposed approach starts with block-wise dedicated and com-
mon channel least squares (LS) estimates ĥhhc(n) and ĥhhd(n) which are
computed based on the a priori knowledge of the common and ded-
icated pilot chips. For the sake of simplicity, without loss of gener-
ality, we assume that block-wise corresponds to slot-wise estimates.
In the second stage, for each k-th element of ĥhhc(n) and ĥhhd(n),
k ∈ {0, ...,MN−1}, a refined estimate ˆ̂hd,k(n) of hd,k(n) is built by
optimally combining the corresponding LS estimates ĥc,k(n) and
ĥd,k(n) so as to obtain an unbiased minimum mean square error

(UMMSE) estimate. Finally, successive estimates ˆ̂hd,k(n) of hd,k(n)
are temporally Kalman filtered in order to generate an improved

estimate
ˆ̂̂
hd,k(n) by exploiting the temporal correlation due to the

finite Doppler spread.

3.1 LS Estimations of Common and Dedicated Channels

We assume that dedicated pilot chips are sent in every slot. Let
SSSd(n) = Sd(n)⊗ I M , where ⊗ denotes the Kronecker product, rep-
resent the block Hankel matrix comprising the dedicated pilot chip
sequence intended for the user of interest in slot n. Similarly we

refer to SSSc(n) = Sc(n)⊗ I M as the block Hankel matrix containing
the common pilot chip sequence in slot n. Let YYY (n) be the received
signal samples vector corresponding to slot n. The LS unstructured
FIR common and dedicated channel estimates FIR are given by

ĥhhd(n) = argmin
hhhd

‖YYY (n)−SSSd(n)hhhd(n)‖2

ĥhhc(n) = argmin
hhhc

‖YYY (n)−SSSc(n)hhhc(n)‖2 (3)

The exact LS solutions of problems (3) are readily given by

ĥhhd(n) = (SSSH
d (n)SSSd(n))−1SSSH

d (n)YYY (n)

ĥhhc(n) = (SSSH
c (n)SSSc(n))−1SSSH

c (n)YYY (n)
(4)

where (·)H denotes Hermitian transpose. Note that the equations
(4) reduce to

ĥhhd(n)≈ b −1
d SSSH

d (n)YYY (n); ĥhhc(n)≈ b −1
c SSSH

c (n)YYY (n)

if the pilot chips can be modeled as i.i.d. random variables, where
b d and b c represent the dedicated and common pilot chip sequences
total energies respectively.

We observe that the LS channel estimation error variances are
equal to s 2

êd,k
= s 2

hd,k
= s 2

ĥd,k
and s 2

êc,k
= s 2

hc,k
= s 2

ĥc,k
for channel

taps k > MN − 1, at which hd,k(n) ≈ 0, hc,k(n) ≈ 0. Hence s 2
êd,k

and s 2
êc,k

can be estimated from ĥd,k and ĥc,k at delays k where we
expect the channel not to carry any energy. That can be achieved by,
e.g., overestimating the channel delay spread, and using the tails of
the channel estimates to obtain unbiased estimates s 2

êd,k
and s 2

êc,k
.

3.2 Unbiased MMSE Combining of LS Estimates

Let ĥhhk(n) = [ĥd,k(n) ĥc,k(n)]T denote the vector of the LS estimates
of the k-th elements of the dedicated and common pilot channel FIR
responses at slot n, i.e.,

ĥhhk(n) =
[

ĥd,k(n)
ĥc,k(n)

]
=

[
hd,k(n)
hc,k(n)

]
+

[
êd,k(n)
êc,k(n)

]
. (5)

In order for our derivation to be fully general, we introduce the fol-
lowing dedicated and common channel correlation model

hc,k(n) = a khd,k(n)+ xc,k(n) (6)

where a khd,k(n) represents the short-term UMMSE estimate of
hc,k(n) on the basis of hd,k(n), and xc,k(n) represents the associ-
ated estimation error. Then, a refined estimate can be obtained as
ˆ̂hd,k(n) = fff kĥhhk(n) by optimal combining of common and dedicated
LS channel estimates. In order not to introduce bias for the process-
ing in the next estimation step, we shall determine fff as the UMMSE
filter, i.e. by solving for all k’s the optimization problem

min
fff k

E|hd,k(n)− fff kĥhhk(n)|2 s.t. fff k[1 a k]T = 1

The optimal UMMSE filter fff k is obtained as

fff k,UMMSE = ([1 a ∗k ]RRR−1
ĥhhk ĥhhk

[1 a k]T )−1[1 a ∗k ]RRR−1
ĥhhk ĥhhk

= ([1 a ∗k ]RRR−1[1 a k]T )−1[1 a ∗k ]RRR−1

where RRRĥhhk ĥhhk
= Eĥhhk(n)ĥhh

H
k (n), RRR = diag(s 2

êd,k
, (s 2

êc,k
+ s 2

xc,k
)), with

s 2
xc,k

= E|x̂c,k(n)|2. Notice that the covariance matrix RRRĥhhk ĥhhk
is equal

to

RRRĥhhk ĥhhk
=

[
r11 r12
r21 r22

]
=

s 2
hd,k

[
1

a k

][
1

a k

]H

+

[
s 2

êd,k
0

0 s 2
êc,k

+ s 2
xc,k

]



Having an estimate of the matrix RRRĥhhk ĥhhk
, e.g. by temporal av-

eraging, we can apply the covariance matching criterion so that
s 2

hd,k
= r11 − s 2

êd,k
, a k = r21/(r11 − s 2

êd,k
), (i.e. a k has the same

phase as r21), where the following bound |a k| ≤ s hc,k /s hd,k =√
(r22− s 2

êc,k
)/(r11− s 2

êd,k
) can be used in actual estimation. Fur-

thermore, since s 2
xc,k

= r22− s 2
êc,k
− |r21|2/(r11− s 2

êd,k
). A similar

covariance matching criterion can be applied to estimate the tempo-
ral correlation coefficient r .

Finally, the variance of the estimation error ˆ̂ed,k(n) after
UMMSE combining, is obtained as

s 2
ˆ̂ed,k

=
s 2

êd,k
(s 2

êc,k
+ s 2

xc,k
)

s 2
êd,k
|a k|2 + s 2

êc,k
+ s 2

xc,k

(7)

The dedicated channel estimate after UMMSE combining,
ˆ̂hd,k(n) = hd,k(n)+ ˆ̂ed,k(n), is such that the post-combining estima-
tion error ˆ̂ed,k(n) is mutually uncorrelated with hd,k(n), ˆ̂ed,k(n) and
ˆ̂ed, j(n) are mutually uncorrelated for any k 6= j, and the variance of
ˆ̂ed,k(n) is independent of k while it depends on the on the Doppler
spread, on the channel power, and on the SINR.

3.3 Kalman Filtering of UMMSE Combined Estimates

Once the UMMSE dedicated channel estimates are obtained, we ap-
ply optimal Kalman causal filtering to exploit the channel temporal
correlation. Since we adopted the channel statistic model (2), the
optimal causal filter is the well-known first order scalar Kalman fil-
ter consisting of a prediction and a correction step. For n > 0 the
prediction step yields to

ˆ̂̂
hd,k(n|n−1) = r

ˆ̂̂
hd,k(n−1|n−1)

= r
[
hd,k(n−1)+ ˆ̂̂ed,k(n−1|n−1)

] (8)

The associated prediction MMSE is given by

s 2
ˆ̂̂ed,k

(n|n−1) = |r |2 s 2
ˆ̂̂ed,k

(n−1|n−1)+(1−|r |2)s 2
D hd,k

Then the Kalman gain for the correction step is given by

g(n) =
s 2

ˆ̂̂ed,k
(n|n−1)

s 2
ˆ̂̂ed,k

(n|n−1)+ s 2
ˆ̂ed,k

so that the correction step equation is readily found as

ˆ̂̂
hd,k(n|n) =

ˆ̂̂
hd,k(n|n−1)+g(n)( ˆ̂hd,k(n)− ˆ̂̂

hd,k(n|n−1)) (9)

and the associated MMSE is given by

s 2
ˆ̂̂ed,k

(n|n) = (1−g(n))s 2
ˆ̂̂ed,k

(n|n−1)

Finally, the steady state MSE is given by the Riccati equation

s 2
ˆ̂̂ed,k

(¥ ) =
s 2

ˆ̂ed,k
[|r |2s 2

ˆ̂̂ed,k
(¥ )+(1−|r |2)s 2

D hd,k
]

|r |2s 2
ˆ̂̂ed,k

(¥ )+(1−|r |2)s 2
D hd,k

+ s 2
ˆ̂ed,k

(10)

and the steady state overall channel NMSE is given by

NMSE =
å MN−1

k=0 s 2
ˆ̂̂ed,k

(¥ )

å MN−1
k=0 s 2

D hd,k

(11)

4. SIMULATIONS AND CONCLUSIONS

The performances of the presented channel estimation methods
in the presence of dedicated transmit beamforming are presented
in figures 1 to 6 in terms of the channel estimate NMSE and
SINR at the RAKE receiver output. We assume the DPCCH to
occupy 20% of the UMTS slot, and the DPCH spreading factor
to be equal to 128. We define the normalized correlation factor
rk = |a k|s hd,k /s hc,k ≤ 1. Being interested in the impact of dedi-
cated and common channel correlation we set, for the sake of sim-
plicity, |a k| = |a 0| constant ∀k. We initially assume the DPCCH
and the CPICH, to be respectively assigned to 5 and 10 % of the
whole base station transmitted power. We also assume an addi-
tional DPCH beamforming gain of 6dB, yielding to a power offset
between DPCCH and CPICH equal to s 2

hc,k
/s 2

hd,k
= 0.5 for all k’s,

so that r = rk =
√

2|a 0|. Channels are randomly generated from
the power delay profile of the UMTS Pedestrian A channel [1] with
a Doppler effect such that |r | = 0.99 between consecutive UMTS
slots. We also assume that we a priori know the quantities |a k|,
s 2

hd,k
, s 2

v , s 2
hc,k

/s 2
hd,k

and all the needed error variances. Methods
for all the unknown parameters estimation and the impact of the re-
quired parameters estimation errors are not addressed here because
of lack of space. By inspecting the plotted results, we conclude that,
as expected, Kalman filtering of combined UMMSE LS estimates
(denoted as ”Kalman over joint UMMSE” in the figures) outper-
forms all the other methods, namely mere LS estimation, Kalman
filtering of dedicated LS estimates, Kalman of common channel LS
estimates, and simple UMMSE combining of LS estimates (denoted
as ”LS dedicated” and ”LS common”, ”Kalman over dedicated LS”,
”Kalman over common LS”, ”Joint UMMSE”’ respectively) in all
circumstances, and approaches the perfect channel state informa-
tion (CSI) performance. Moreover the steady-state analysis results
(denoted as ”Kalman over joint UMMSE (ideal)” in the figures)
perfectly match the simulation results. Finally one may observe
that when the correlation coefficient r decreases (e.g. r = 0.75 as
in figure 3) the contribution from the common channel estimation
quickly becomes negligible compared to the benefit still provided
by Kalman filtering alone over dedicated LS channel estimates. In
this case the UMMSE combining step can be skipped to reduce
complexity.
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Figure 1: NMSE vs DPCCH Ec/N0, r = 0.99

−16 −14 −12 −10 −8 −6 −4 −2 0 2 4 6 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

DPCCH E
c
/N

0
(dB)

N
M

S
E

(d
B

)

dedicated LS
common LS
joint UMMSE
Kalman over dedicated LS
Kalman over common LS
Kalman over joint UMMSE
Kalman over joint UMMSE (ideal)

Figure 2: NMSE vs DPCCH Ec/N0, r = 0.85
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Figure 3: NMSE vs DPCCH Ec/N0, r = 0.75
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Figure 4: SINR vs DPCCH Ec/N0, r = 0.99
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Figure 5: SINR vs DPCCH Ec/N0, r = 0.85
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Figure 6: SINR vs DPCCH Ec/N0, r = 0.75
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