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ABSTRACT

In this paper, we introduce a two-dimensional Generalized Au-
toregressive Conditional Heteroscedasticity (GARCH) model for
clutter modeling and anomaly detection. The one-dimensional
GARCH model is widely used for modeling financial time se-
ries. Extending the one-dimensional GARCH model into two di-
mensions yields a novel clutter model which is capable of taking
into account important characteristics of natural clutter, namely
heavy tailed distribution and innovations clustering. We show that
the two-dimensional GARCH model generalizes the casual Gauss
Markov random field (GMRF) model, and develop a matched sub-
space detector (MSD) for detecting anomalies in GARCH clutter.
Experimental results demonstrate that a reduced false alarm rate
can be achieved without compromising the detection rate by us-
ing an MSD under GARCH clutter modeling, rather than GMRF
clutter modeling.

1. INTRODUCTION

Anomaly detection is the process of detecting a portion of the data,
which differs in some statistical sense from the background clutter.
Anomaly detection is a well-studied problem with many practical
applications including detection of targets in images [1–4], detec-
tion of defects in silicon wafers [5], detection of faults in seis-
mic data [6], etc. The greatest factor in anomaly detection is the
choice of an adequate statistical model for the clutter, which would
enable to discriminate between anomalies and the clutter compo-
nents. Unfortunately, clutter modeling is often obtained by uti-
lizing a Gauss Markov random field (GMRF) model [6, 7], which
is insufficient in its capability to model natural clutter. To over-
come this limitation, and in order to decrease the false alarm rate
while retaining the desired detection rate, various methods have
been proposed. Among these methods we find multiscale repre-
sentations for detecting anomalies in different scales [5, 8], per-
forming segmentation as a preprocessing stage to anomaly detec-
tion [2], utilizing a priori information about the shape, size, and
other characteristics of the anomaly [9], applying sliding windows
to the image through which the model estimation and anomaly de-
tection can be carried out locally [10], etc.

In this paper, we introduce a two-dimensional Generalized Au-
toregressive Conditional Heteroscedasticity (GARCH) model for
clutter modeling and anomaly detection. The one-dimensional
GARCH model [11] is widely used for modeling financial time
series. Extending the one-dimensional GARCH model into two
dimensions yields a novel clutter model which is capable of taking
into account important characteristics of natural clutter, namely
heavy tailed distribution and innovations clustering. We show that

the two-dimensional GARCH model generalizes the casual GMRF
model, and develop a matched subspace detector (MSD) for de-
tecting anomalies in GARCH clutter. The performance of the pro-
posed anomaly detection method is evaluated on synthetic and real
data. Experimental results demonstrate that reduced false alarm
rate can be achieved without compromising the detection rate by
using an MSD under GARCH clutter modeling, rather than GMRF
clutter modeling.

The paper is organized as follows: In Sec. 2 we introduce the
two-dimensional GARCH model. In Sec. 3 we address the model
estimation problem. In Sec. 4 we develop an MSD for detecting
anomalies in GARCH clutter. Finally, in Sec. 5 we demonstrate
the advantage of the proposed anomaly detection approach over
using the GMRF clutter modeling.

2. TWO DIMENSIONAL GARCH MODEL

Let q1, q2, p1, p2 ≥ 0 denote the order of the GARCH model, and
let Γ1 and Γ2 denote two neighborhood sets which are defined by

Γ1 = {k` | 0 ≤ k ≤ q1, 0 ≤ ` ≤ q2, (k`) 6= (0, 0)}
Γ2 = {k` | 0 ≤ k ≤ p1, 0 ≤ ` ≤ p2, (k`) 6= (0, 0)} .

Let εij represent a 2D stochastic process, and let hij de-
note its variance conditioned upon the information set ψij =
{{εi−k,j−`}k`∈Γ1 , {hi−k,j−`}k`∈Γ2}. Define the 2D neigh-
borhood of location ij as: Γ = {k` | k ≤ i, ` ≤ j} and

let ηij
iid∼ N(0, 1) be a stochastic 2D process independent of

hk`, ∀k` ∈ Γ. The 2D GARCH(p1, p2, q1, q2) process is de-
fined as:

εij =
√

hij ηij (1)

hij = α0 +
∑

k`∈Γ1

αk`ε
2
i−k,j−` +

∑

k`∈Γ2

βk`hi−k,j−` , (2)

and is therefore conditionally distributed as:

εij | ψij ∼ N(0, hij) . (3)

In order to guarantee a non-negative conditional variance we re-
quire:

α0 > 0

αkl ≥ 0, k` ∈ Γ1

βkl ≥ 0, k` ∈ Γ2 . (4)

From (2) we see that at every spatial location, both the neighboring
sample variances and the neighboring conditional variances play
a role in the current conditional variance. This yields clustering



of variations, which is an important characteristic of the GARCH
process. Note that if q1 = q2 = p1 = p2 = 0 then εij is simply
white Gaussian noise (WGN).

It is shown in [11] that a sufficient condition for wide sense
stationarity of the 1D GARCH process is that the sum of all pa-
rameters is smaller than one. A similar result is obtained in the 2D
case as we prove in the following theorem.

Theorem 1: The GARCH(p1, p2, q1, q2) process as defined
in (1) and (2) is wide-sense stationary with:

E(εij) = 0

var(εij) = α0


 1−

∑

k`∈Γ1

αk` −
∑

k`∈Γ2

βk`



−1

cov(εij, εk`) = 0, ∀(ij) 6= (k`) ,

if and only if
∑

k`∈Γ1

αk` +
∑

k`∈Γ2

βk` < 1.

Proof: Substituting (1) into (2) yields:

hij = α0

∞∑
g=0

M(i, j, g) , (5)

where M(i, j, g) involves all terms of the form:

∏

k`∈Γ1

α
ak`
k`

∏

k`∈Γ1

β
bk`
k`

n∏
r=1

η2
(ij)−sr

,

for ∑

k`∈Γ1

ak` +
∑

k`∈Γ2

bk` = g ;
∑

k`∈Γ1

ak` = n

and

0 ≤ |s1| ≤ |s2| ≤ · · · ≤ |sn|
sr ≡ (sri , srj )

sri ≤ max {kq1, (g − 1)q1 + p1}
srj ≤ max {kq2, (g − 1)q2 + p2} .

In general

M(i, j, g) =
∑

k`∈Γ1

αk`η
2
i−k,j−`M(i− k, j − `, g) +

+
∑

k`∈Γ2

βk`M(i− k, j − `, g) . (6)

Since ηij is i.i.d., the moments of M(i, j, g) are independent of
(ij), and in particular

E {M(i, j, g)} = E {M(k, `, g)} ∀ ijk`g . (7)

From (6) and (7) we have:

E {M(i, j, g + 1)} =


 ∑

k`∈Γ1

αk` +
∑

k`∈Γ2

βk`




g+1

. (8)

Finally by (5) and (8):

E
{
ε2ij

}
= α0


 1−

∑

k`∈Γ1

αk` −
∑

k`∈Γ2

βk`



−1

,

if and only if ∑

k`∈Γ1

αk` +
∑

k`∈Γ2

βk` < 1 .

E(εij) = 0 and cov(εij, εk`) = 0, ∀(ij) 6= (k`) follows immedi-
ately.

3. MODEL ESTIMATION

In this section we find a maximum likelihood estimate for the
GARCH model. We let εij be innovations of a 2D linear regres-
sion, where yij is the dependent variable, xij a vector of explana-
tory variables and b a vector of unknown parameters:

εij = yij − xT
ijb , (9)

If εij in (9) is WGN the regression model is a casual GMRF. This
is a special case of the GARCH process. Using (9) we can write
(2) as:

hij = α0 +
∑

k,`∈Γ1

αk`(yi−k,j−` − xT
i−k,j−`b)2 +

+
∑

k`∈Γ2

βk`hi−k,j−` . (10)

The conditional distribution of yij is Gaussian with mean xT
ijb and

variance hij :

f(yij | xij , ψij) =
1√

2πhij

exp

(
−(yij − xT

ijb)2

2hij

)
. (11)

Let

zT
ij = [1, ε2i−1,j , . . . , ε

2
i−q1,j−q2 , hi−1,j , . . . , hi−p1,j−p2 ] =

= [1, (yi−1,j − xT
i−1,jb)

2, . . . , (yi−q1,j−q2 − xT
i−q1,j−q2b)2,

hi−1,j , . . . , hi−p1,j−p2 ]

and let

δT = [α0, α0,1, . . . , αq1,q2 , β0,1, . . . , βp1,p2 ] ,

then (10) can be written as:

hij = [zij(b)]T δ . (12)

The unknown parameters are collected into a column vector θ =
[bT , δT ]T . Define the sample space Ω as a two dimensional lat-
tice of size N × M : Ω = {ij | 1 ≤ i ≤ N, 1 ≤ j ≤ M}. The
conditional sample log likelihood is:

L(θ) =
∑
ij∈Ω

log f(yij | xij , ψij) =

= −1

2
[(N + M)log(2π) +

∑
ij∈Ω

log([zij(b)]T δ) +

+
∑
ij∈Ω

(yij − xT
ijb)2/([zij(b)]T δ)] . (13)

The parameter vector θ is found by numerically solving a con-
strained maximization problem on the log likelihood function with
respect to the unknown parameters (see for example [12]). The
constraints used are those presented in (4) and in Theorem 1. To
solve the maximization problem knowledge of values of εij and



hij where i, j ≤ 0 is required. As in [11] we set these boundary
conditions as:

εij = hij =
1

NM

∑

k`∈Ω

(yij − xT
ijb)2; ∀ ij ≤ 0 . (14)

4. ANOMALY DETECTION

In this section we develop our anomaly detection approach, which
is based on modeling the image as a 2D causal autoregressive
model with GARCH innovations. We assume that the anoma-
lies are sparse within the image and therefore their influence on
the model estimation and on the estimated conditional variance
field is negligible. Model estimation is performed as described in
Section 3. The conditional variance field hij is calculated based
on the estimated model parameters and is later used in our detec-
tion process. The anomalies are 2-dimensional with a spatial size
K×L which is much smaller than N ×M . The anomalies are as-
sumed to lie within a known subspace spanned by G image chips
wg, g = 1, 2, · · · , G, each of size K × L. A matrix H , whose
columns span the anomaly subspace is created by row stacking ev-
ery image chip into a column vector and setting these vectors as
columns in H .

We model the interference subspace in a similar manner using
T image chips st, t = 1, 2, · · · , T , each of size K × L. A matrix
spanning the interference subspace S is created.

In [9] an MSD is developed for the detection of subspace sig-
nals in subspace interference and WGN. Here we develop a MSD
for the detection of subspace signals in GARCH clutter and sub-
space interference.

Let y(s) represent a pixel at spatial location s. For each pixel
y(s) we create a column vector y(s) by row stacking an image
chip of size K × L centered around s. Let ε(s) be a result of row
stacking a chip of a GARCH field of size K × L centered around
s. Similarly let x(s) be a vector representing the explanatory vari-
able field (xijb) in the K ×L neighborhood of s. Let φ(s), ψ(s)
be the weight vectors for the interference and anomaly subspaces
respectively. We define two hypotheses, H0 and H1, which repre-
sent absence and respectively presence of an anomaly:

H0 : y(s) = Sφ(s) + x(s) + ε(s)

H1 : y(s) = Hψ(s) + Sφ(s) + x(s) + ε(s) . (15)

Let h(s) represent a row stack of the conditional variance field
hij around s, and let Σ(s) be the conditional covariance matrix of
y(s). Σ(s) is a diagonal matrix whose main diagonal equals the
elements of h(s). Under the two hypotheses y(s) is conditionally
Gaussian distributed with identical covariance matrices and with
different means:

H0 : y(s) ∼ N(Sφ(s) + x(s), Σ(s))

H1 : y(s) ∼ N(Hψ(s) + Sφ(s) + x(s), Σ(s)) .

Define PS as the projection into the subspace spanned by the
columns of S, and define PHS as the projection into the subspace
spanned by the columns of the concatenated matrix [HS], that is:

PS = S(ST S)−1ST

PHS = [HS]
(
[HS]T [HS]

) −1

[HS]T . (16)

From (15) and (16) we find the GARCH innovations field under
the two hypothesis:

H0 : ε0(s) = y(s)− x(s)− Sφ(s) =

= (I − PS)[y(s)− x(s)] (17)

H1 : ε1(s) = y(s)− x(s)− Sφ(s)−Hψ(s) =

= (I − PHS)[y(s)− x(s)] . (18)

The conditional likelihood function of ε under the two hypoth-
esis is:

H0 : `0 = (2π)−KL/2 | Σ(s) |−1/2

×exp

[
−1

2
ε0(s)

T Σ(s)−1(s)ε0(s)

]

H1 : `1 = (2π)−KL/2 | Σ(s) |−1/2

×exp

[
−1

2
ε1(s)

T Σ(s)−1(s)ε1(s)

]
,

where | Σ(s) | denotes the determinant of Σ(s).
The generalized likelihood ratio (GLR) is:

L(s) = 2 log

(
`1(s)

`0(s)

)
, (19)

which yields:

L(s) = ε0(s)
T Σ(s)−1ε0(s)− ε1(s)

T Σ(s)−1ε1(s) =

= [ε0(s)− ε1(s)]
T Σ(s)−1[ε0(s)− ε1(s)] =

= [(PHS − PS)(y(s)− x(s))]T Σ(s)−1

× [(PHS − PS)(y(s)− x(s))] . (20)

Define the ratio between the energy of the signal which does
not lie in the interference subspace and the innovations’ condi-
tional variance as the signal to noise ratio (SNR):

SNR = [(Hψ(s))(I − PS)]T Σ(s)−1 [(Hψ(s))(I − PS)] .
(21)

The GLR is a sum of squared conditionally independent nor-
mally distributed variables and therefore is conditionally chi-
square distributed with u = rank(H) degrees of freedom:

H0 : L(s) ∼ χ2
u(0)

H1 : L(s) ∼ χ2
u(SNR) .

Under hypothesis H1, the non-centrality parameter of the chi-
square distribution of L(s) is equal to the SNR [9]. Detection

is performed by applying a threshold η to the GLR: L(s)
H1
>
<
H0

η. The

threshold is determined by the tradeoff between the desired con-
ditional detection and false alarm rates, where these can be calcu-
lated by:

PFA = 1− P
[
χ2

u(0) ≤ η
]

(22)

PD = 1− P
[
χ2

u(SNR) ≤ η
]

. (23)

The following describes the steps taken in order to detect
anomalies within an region of interest (ROI):

1. Select an ROI in the image and a threshold η using (22).

2. Estimate the unknown parameters using the model estima-
tion method described in Section 3.



(a) (b)

(c)

Fig. 1. Anomaly detection in synthetic GARCH clutter: (a) Origi-
nal image with embedded rectangular anomaly; (b) GLR based on
GMRF clutter modeling; (c) GLR based on GARCH clutter mod-
eling;

3. Calculate the conditional variance field h(s) using (12).

4. Calculate the GARCH innovation fields εk(s), k ∈ {0, 1}.
for every spatial location s, using (17),(18)

5. Find the GLR for every spatial location s using (20).

6. Compare the GLR to the chosen threshold to achieve the
anomaly detection image.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we demonstrate the performance of our anomaly de-
tection approach on synthetic and real data, and show the advan-
tage of using GARCH clutter modeling compared to using GMRF
modeling.

5.1. Synthetic Data

We use synthetic image data, which was generated using a
GARCH(1,1,1,1) model with the following parameters: α0 =
0.002, α0,1 = 0.3, α1,0 = 0.25, α1,1 = 0.1, β0,1 =
0.03, β1,0 = 0.02, β1,1 = 0.04, b = [0.04, 0.03, 0.05]T and
xij = [yi,j−1, yi−1,j , yi−1,j−1]

T . A 5 × 5 anomaly is planted
in the synthetic image. Figure 1(a) shows the synthetic image with
the inserted anomaly. The anomaly does not stand out as much as
the clustered variations to its upper left. We set the anomaly size to
K = L = 7 and create an anomaly subspace using a single image
chip. No interference subspace is assumed. We perform parame-
ter estimation as described in Section 3 and anomaly detection as
detailed in Section 4. Figure 1(b) shows the GLR when perform-
ing an MSD based anomaly detection in a strongly casual GMRF
clutter. Figure 1(c) shows the GLR obtained by (20) when model-
ing the image as a GARCH process. Typically, as demonstrated in
Figure 1, the MSD under GARCH modeling yields a lower false
alarm rate than under GMRF modeling.

5.2. Real Data

We now demonstrate the performance of our anomaly detection
approach on a real silicon wafer image. Figure 2(a) shows an im-
age of a silicon wafer containing a manufacturing defect. Fig-
ures 2(b) and 2(c) show the detection results using a GMRF clut-
ter model and a GARCH clutter model, respectively. We used an

(a) (b)

(c)

Fig. 2. Silicon wafer defect detection: (a) Original image; (b) GLR
based on GMRF clutter modeling; (c) GLR based on GARCH clut-
ter modeling;

anomaly subspace constructed from a single image chip of size
5 × 5. Note that we did not use training images of typical de-
fects to create the anomaly subspace. The advantage of GARCH
modeling over GMRF modeling is clearly evident.

6. REFERENCES

[1] I. S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of
an optical pattern with unknown spectral distribution,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, no. 10, pp. 1760–1770,
October 1990.

[2] E. A. Ashton, “Detection of subpixel anomalies in multispectral in-
frared imagery using an adaptive Bayesian classifier,” IEEE Trans.
Geosci. Remote Sensing, vol. 36, no. 2, pp. 506–517, March 1998.

[3] D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum
and A. D. Stocker, “Anomaly detection from hyperspectral imagery,”
IEEE Signal Processing Mag., vol. 19, no. 1, pp. 58–69, January 2002.

[4] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral
imaging applications,” IEEE Signal Processing Mag., vol. 19, no. 1, pp.
29–43, January 2002.

[5] A. Goldman and I. Cohen, “Anomaly subspace detection based on a
multi-scale Markov random field model,” to appear in Signal Process-
ing.

[6] A. Noiboar and I. Cohen, “Anomaly detection in three dimensional
data based on Gauss Markov random field modeling,” in Proc. 23rd
IEEE Convention of Electrical and Electronics Engineers, Israel, Sep.
2004, pp. 448–451.

[7] S. M. Schweizer and J. M. F. Moura, “Hyperspectral imagery: Clutter
adaptation in anomaly detection,” IEEE Trans. Inform. Theory, vol. 46,
no. 5, pp. 1855–1871, August 2000.

[8] R. N. Strickland and H. I. Hahn, “Wavelet transform methods for
object detection and recovery,” IEEE Trans. Image Processing, vol. 6,
no. 5, pp. 724–735, May 1997.

[9] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE
Trans. Signal Processing, vol. 42, no. 8, pp. 2146–2157, August 1994.

[10] S. M. Schweizer and J. M. F. Moura, “Efficient detection in hyper-
spectral imagery,” IEEE Trans. Image Processing, vol. 10, no. 4, pp.
584–597, April 2001.

[11] T. Bollerslev, “Generalized autoregressive conditional heteroscedas-
ticity,” Journal of Econometrics, vol. 31, pp. 307–327, 1986.

[12] E. K. Berndt, B. H. Hall, R. E. Hall and J. A. Hausman, “Estimation
inference in nonlinear structural models,” Annals of Economics and
Social Measurments, vol. 4, pp. 653–655, 1974.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Israel Cohen
	Amir Noiboar



