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ABSTRACT

This paper presents a new direct method for the lowpass and
highpass IIR filter design. The method is based on the de-
sign of complex allpass filters. In contrast to the existing
direct methods for the IIR filter design, the method presented
here uses the same specifications, namely the passband and
stopband frequencies, and passband droop and stopband at-
tenuation, as the specifications used in the analog filter based
design of IR filters. The resulting filter is a Butterworth-type
filter.

1. INTRODUCTION

It is well known that the traditional IIR filter design is based
on the corresponding analog filter design [1]. Recently, dif-
ferent direct methods have been proposed for designing IIR
filters, such as [2-8]. In this paper we propose a method for
a direct IIR filter design based on complex allpass filters. We
use the result presented in [9] for constructing complex all-
pass filters. The design of a digital filter based on allpass
filters has certain advantages, such as lower sensitivity to fil-
ter quantization [1].

The design parameters in this approach are the same as
the ones in the traditional IIR filter design. These are shown
in Fig. 1(a) and are passband frequency ®,, stopband fre-
quency @, passband droop A, and stopband attenuation Ay.

An TIR lowpass filter H(z) of an even order N can be
expressed in terms of two complex allpass filters Ap(z) and
Ai(z) [10] |

H(z) = 5 [Ao(z) +A1(2)]- (1)
We rewrite this relation in the following form,
Ap(z
1 =22 1), @

where A(z) = A (z)/Ao(z).
From Eq.(2) we have

H (/) = % I1+A(e/®)
= cos® (%(2(0)> , 3

where ¢4 () is the phase response of A(z).

The relation (3) shows that the square magnitude re-
sponse of H(z) depends only on the phase of A(z). In order
to design a lowpass filter, the phase values of ¢4 (®) at ® =0
and @ = 7 must be 0 and 7, respectively. The phase value at
@ = o), has a certain value ¢,4 as shown in Fig. 1(b). The
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Figure 1: Design parameters and phase response of A(z).

proposed design of an IIR lowpass filter H(z) is based on the
design of one complex allpass filter with the prescribed phase
values, and Section 2 presents the design of such a complex
allpass filter with desired phase characteristics. In Section 3
we propose the algorithm for the design of a lowpass filter
while in Section 4 we present a way to design its highpass
counterpart.

2. DESIGN OF COMPLEX ALLPASS FILTERS

A complex allpass filter of order N (N is even) is given by,

AR)=z" ;‘*I;((ZZ)) : 4)

where « is a complex constant with the unit magnitude, and z
is a complex variable. The symbols « and ~ denote conjugate



and paraconjugate, respectively. The complex polynomial
F(z)is

N
F)=1+Y fuc ™. 5)
n=1

where f;, are complex coefficients.
Using Eq.(4) the relationship between the phases of A(z)
and F(z) can be expressed by

¢a(@) = —@N +2¢q — 2¢F (0), 6)

where ¢ is the phase of o. Since the value of ¢4(0) is O it
follows that ¢y, = ¢ (0).

Considering the value of A, in dB, the desired phase
value ¢4 () at @, is, (see Eq.(3))

¢pa = Pa(w,) = 2arccos (10—A;7/20> ) 7

Using Eq.(6), the corresponding group delay 74(®) of
the allpass filter is given as,

(@) =N+ 17 (o), (8)

where Tp () is the group delay of F(z).

The designed filter H(z) has flatnessat o =0and ® =
(see Fig. 1(a)) i.e. it is a Butterworth-type filter. The degree
of flatness at these frequency points is equal to N — 2. Group
delays of the allpass filter at @ = 0 and w = &, are equal to
zero, T4(0) = t4(mw) = 0, as shown in Fig. 1(b). Therefore,
from Eq.(8) the corresponding group delays of F(z) at these
points are N /2. In a similar way, by denoting the phase value
of F(z) at @ = 0 as — ¢y, it follows that the phase at @ = 7 is
—¢o— (N+1)m/2 (see Eq.(6)). Using the method proposed
in [9], the corresponding filter coefficientes of F(z) in Eq.
(5) are
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Using Egs.(6) and (9) it follows

o=e /%, (10)

‘We use the result [9],

N
Y sin(@,n— @, — 9o — ¢n)rn =0, (11)
n=0
where r, and ¢, are the magnitude and phase of f,, and
A+ O,N
op = %%. (12)
Solving Eq.(11) we get,
1 D
=—In{ — 13
%o 27 H{D* }, (13)
where D = ej¢l’B(’§ —e /% B, and
%_1 N
By — j(2m+1)w, 14
0 n;::o <2m+ 1>€ , (14)

N
Bl _ i (N)ejZm(Dp. (15)

Since f, is a Type I symmetric sequence, F(z) can be
expressed as,

F(z) =Bz ™ Fo(z" (), (16)
where Fy(z) is the polynomial with all zeros inside the unit
circle, and ng is

1o =N/2. (17

The complex constant f3 is given by,

—1)"
ﬁ:lEIZO_I)Rk’ (18)

where Ry are the zeros of the polynomial Fy(z).
Using Eq.(16) we express A(z) in the following form,

AQD) = _ N R DR(E) (19)

Ao(z) a*yz Ry (z7 Dy (z)’
where
_B
Tk @
_(& ' *"oFO(Zil)
_ () b
A1(Z)(y)z g, )

Applying the results (21) and (22), we now rewrite Eq.(1)
for the desired IIR filter as,

1 YRz F
H(zx) =~ (a> b)) | (a> LI R
2\ Fo(z1) Y Fo(z)
In the next section we propose an algorithm for the design
of an IIR filter based on Eq.(23).

3. ALGORITHM FOR LOWPASS FILTER DESIGN

The algorithm for the filter design is described in the follo-

wing steps.

1. Estimate the order N of the filter using the well known
relation for the traditional digital Butterworth filter de-

sign [1],
x/107]
log ( 1ot 7 )
N— 10"/)“'::71
2log (“’Ti)

where the symbol [-] denotes the ceiling function, and

; (24)

@), = tan (%) , (25)
o) = tan (%) . (26)

If the estimated value N is odd we increase it by one.

2. Calculate the phase value at @, of the allpass filter using
Eq. (7). Based on this result and the estimated value of
N, compute the value ¢, using (12) and the phase ¢ of
the filter 1/F (z) based on Eq. (13).



3. Calculate the coefficients f, given by Eq.(9). Com-
pute the minimum and maximum phase subfilters Fy(z)
and z "0 Fy(z '), and their corresponding paraconjugates
7 Fy(z) and Fy(z 7).

4. Finally, using the values of o and Y calculated from Egs.
(10) and (20), compute the coefficients of the desired
lowpass IIR filter H(z) using the relation (23).

We illustrate the proposed algorithm with one example.
Example 1. We design an IIR lowpass filter H(z) with
the following specifications: passband frequency w, = 0.37,
stopband frequency @; = 0.67, passband droop, A, = 1 dB,
and stopband attenuation, Ay = 40 dB.
Our calculation procedure is as follows.
1. From Eq. (24) it follows that N = 6.
2. Using Eqgs.(7), (12) and (13), we calculate the following
phase values, ¢4 (®,) =0.9414, ¢, = 3.298134 and ¢y =
1.536422.

3. The coefficients f,, computed using Eq.(9) are given in
Table 1.

[ n ] fo [ 1] Jou |
06 1]0 I
[ [5| —50858—,04122 | I | —1.0I11+,j0.4232
24 15 2] 0.5562—,0.2307
3 | —19.9528—j1.3739 | 3 | —0.1012+ j0.0634

Table 1: Filter coefficients of A(z) and Fy(z) in Example 1.

Using Eq.(5) and the values of f,, we compute the coeffi-
cients of the subfilter Fy(z). The filter coefficients fp, are
shown in Table 1.

4. We calculate o and y using Egs.(10) and (20) to be @ =
0.0344 — j0.9994 and y = —0.8475 — j0.5308. Finally,
the coefficients of the filter H(z) are obtained from Eq.
(23) and they are shown in Table 2.

[ n [ Numerator [[ n | Denominator ]
06 0.0041 0 114 0.6208
115 0.0246 1| —=2.0222 | 5| —0.1418
214 0.0615 || 2 23138 | 6 0.0142

3 0.0820 || 3 | —1.5223

Table 2: Filter coefficients of H(z) in Example 1.

The magnitude response of the designed filter is plotted
in Fig. 2. The passband and stopband details, given in Fig.
2(b), demonstrate that the specifications are satisfied.

4. DESIGN OF HIGHPASS FILTERS

A relation useful for the highpass filter design that involves
two complex allpass filters is [10],

L lao(0) — A1 (2)]. @7)

G(Z):jj[

Using Eqs.(19)-(22) we now have,

o056 R ()R

(28)

Magnitude response of H(z)
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Figure 2: Example 1.

In this case the phase value ¢, is given as,
01p = 2arcsin (1074/20) (29)

The procedure for the design of a highpass filter G(z) is
similar to the one described in the previous section. The only
difference is that the frequencies in Egs.(25) and (26) are now

(;01’7 = tan (ﬂzwp) , (30)
@;:tan(”;@), G1)

and the corresponding relations given by (7) and (23) are now
as given by Eqgs.(29) and (28), respectively.

Example 2. In this example we illustrate the algorithm
for the IIR highpass filter design with the passband and stop-
band frequencies 0.8 and 0.6z, and passband droop and
stopband attenuation 2 dB and 50 dB, respectively.

1. Using Eq.(24), the estimated value of NV is 8.
2. From Egs.(29), (12) and (13), compute @,4 = 1.8358,

¢p = 10.9710 and ¢g = —1.6243 x 1074,

3. The filter coefficients f,, computed using Eq.(9) are given

in Table 3.

Using Eq.(5) arrive at the filter F(z), and find its subfilter

Fy(z). The resulting coefficients of Fy(z) are shown in

Table 3.




l n [ JSn [ n [ Son l
018 110 1
1|7 7.9999 + ;0.0026 | 1 | 2.3413+ j0.3032
216 28 | 2| 2.2351+ j0.4750
315 ] 559999+ ;0.0182 | 3 | 0.9957+ j0.2814

4 70 | 4 | 0.1728 + j0.0589

Table 3: Filter coefficients of A(z) and Fy(z) in Example 2.

4. The corresponding values of & and 7y are @ = 0.99999 +
j0.00016 and y = —0.9465 + j0.3227. The calculated
filter coefficients of G(z) are shown in Table 4.

[ n ] Numerator [[ n | Denominator ]
018 2965x 105 [[ 0 1]5] 55634
1] 7] =23728x107° [[ 1| 4.6826 | 6 | 1.8992
216 83.047x 107> || 2 | 10.0438 | 7 | 0.3773
35 ] —166.095%x107> || 3 | 12.7455 | 8 | 0.0333
4 207.618 x 10> || 4 | 10.4001

Table 4: Filter coefficients of G(z) in Example 2.

The magnitude response of G(z) given in Fig. 3 verifies
that the specifications are satisfied.

5. CONCLUSION

This paper presents a new direct method for the design of
lowpass and highpass IIR filters based on complex allpass fil-
ters. The design parameters are the same as in the traditional
IIR filter design, and these are the passband and stopband
frequencies, passband droop and stopband attenuation. The
resulting filter has a flat magnitude response in both passband
and stopband. The proposed design is implemented in MAT-
LAB where the inputs are the filter design parameters and the
outputs are the IIR and complex allpass filter coefficients,
computed according to Eqs.(23) and (28).
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