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ABSTRACT

Parametric modeling of musical instrument sounds is useful be-
cause it makes possible to represent signals in a compact form, to
resynthesize them in a modified or morphed way, or to apply the pa-
rameters in physical and perceptual studies of acoustic instruments.
In this paper we propose high-resolution pole-zero modeling tech-
niques that are applicable to parametric representation of string in-
strument sounds, assuming approximately linear and time-invariant
behavior of the instrument. An example of applying the techniques
to the acoustic guitar sound is presented.

1. INTRODUCTION

Parametric models of musical instrument sounds are highly useful
in audio, computermusic, andmusic acoustics research. A paramet-
ric model allows for compact representation of signals in analysis
and synthesis (including modification and morphing) as well as for
the understanding of related phenomena in basic research.

There are different techniques available for parametrization of
musical instrument signals. For example sinusoidal (or spectral)
modeling is a general methodology, applicable to any sound com-
posed of discrete spectral components. However, its parameters
may not be explicitly related to underlying physical phenomena.
Sinusoidal modeling also requires additional methods to cope with
transients that are typical in the attacks of instrument sounds.

When instruments under study contain resonators that are ap-
proximately linear and time-invariant, a source-filter model can rep-
resent its operation by an excitation (source signal) and a system
function (filter). Any such system can be specified by poles and ze-
ros in the transfer function, whereby complex conjugate pole pairs
are typically related to modes and resonances of the system.

Plucked and struck string instruments fit well to this scheme.
For example in the guitar the string is excited by a brief impulse-
like plucking event, after which the autonomous vibration modes
decay exponentially. The source-filter approach using excitation
and all-pole or pole-zero filtering is a natural solution in such
cases. For synthesis purposes, specialfilter structures such as digital
waveguides (DWG) [1] can be computationally more efficient than
generic pole-zero filters. Even then, a general filter model can be
used as an intermediate step in the calibration of the DWG models.

Generic pole-zero modeling of string instrument sounds is not
simple, however. Difficulties come from the high order of the filter
models required and the positions of complex poles very close to the
unit circle in the z-domain. High-resolution techniques are needed
to solve the filter parameters.

The problem domain of this paper is to elaborate high-reso-
lution pole-zero methods for the modeling of string instrument
sounds. We first concentrate on finding accurate values for the
poles that represent modal behavior. An analysis method called FZ-
ARMA is used for finding these poles. Then the final pole-zero
filter and the excitation is achieved by Kautz filter models. As a
case study, the approach is applied to the modeling of the acoustic
guitar sound.

2. HIGH-RESOLUTIONMODE ANALYSIS

If the response of a string to excitation were an AR (autoregres-
sive) process, it could be analyzed by straightforward AR modeling
techniques, such as the linear prediction (LP) [2], resulting in an
all-pole filter. This is not manageable in practice because the pole
positions close to the unit circle makes the analysis numerically too
critical, and the allocation of the number of poles for each partial
of the string cannot be easily controlled. It is important to notice
that the two polarizations of string vibration with slightly different
frequencies make each partial to be a sum of two decaying sinu-
soids, exhibiting beating or two-stage decay of the envelope [3],
thus needing at least two pole pairs to represent it properly.

Since the string response to excitation is not a minimum-phase
signal, the AR modeling approach is even in theory a wrong tool.
ARMA (autoregressive moving average) models are capable to
match such responses, but due to iterative solutions, models that
are higher in order than 20–200 may not converge to a stable and
useful result.

2.1 FZ-ARMA analysis

To avoid the problems in resolution and computational precision
discussed above, we have developed a subband technique called
FZ-ARMA (frequency-zooming ARMA) analysis [4, 5]. Instead
a single model, global over the entire frequency range, the signal is
pole-zero modeled in subbands, i.e., by zooming to a small enough
band at a time, thus allowing a filter order low enough and individ-
ually selectable to each subband. This helps in resolving resonant
modes that are very sharp or close to each other in frequency. The
FZ-ARMA analysis consists of the following steps.
(i) Select a frequency range of interest, e.g. a few Hz wide fre-

quency region around the spectral peak of a partial.
(ii) Modulate the target signal (shift in frequency by multiplying

with a complex exponential) to place the center of the frequency
band, defined in (i), at the origin of the frequency axis by map-
ping

hm�n� � e� jΩmnh�n� (1)
where h�n� is the original sampled signal, hm�n� the down-
modulated one, n is the sample index, and Ω the (normalized)
modulation frequency. This rotates the poles of transfer function
byΩi�rot �Ωi�Ωm.

(iii) Apply lowpass filtering to the complex-valued modulated sig-
nal in order to attenuate its spectral content outside the zoomed
band of interest.

(iv) Decimate (down-sample) the lowpass filtered signal according
to its new bandwidth. This zooms system poles z i by

zi�zoom � zKzoom
i

� �zi�
Kzoom e j�Ωi�Ωm�Kzoom (2)

where Kzoom is the zooming factor, and zi�zoom are the mapped
poles in the zoomed frequency domain.

(v) Estimate an ARMA (pole-zero) model for the obtained deci-
mated signal in the zoomed frequency domain. For this we
have applied the iterative Steiglitz-McBride algorithm (function
stmcb.m in Matlab).
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Figure 1: Spectrum of plucked string sound of a classical acoustic
guitar, open string E4. Spectrum zoomed to a single partial is shown
in the subplot.

(vi) Map the obtained poles back to the original frequency domain
by operations inverse to the above-presented ones. Zeros cannot
be utilized as easily, thus we don’t use them in this study for the
final modeling. There may also be poles that correspond to the
truncated frequency band edges, thus needing to be excluded.
Therefore only relevant poles are directly useful parameters.

When applying pole-zero modeling, the selection of the number
of poles has to be made appropriately according to the characteris-
tics of the problem. The number of poles1 should correspond to the
order of the resonator to be modeled. For example a partial (‘har-
monic’) of string vibration is composed of two polarizations, thus
the partial may exhibit more than one peak in the frequency domain
and beating or two-stage decay in the time-domain envelope. Fig-
ure 1 depicts the spectrum of a plucked guitar sound with a subplot
zoomed into one partial having two spectral peaks.

A proper number of zeros in FZ-ARMA modeling is needed
to make it able to fit the phases of the decaying sinusoids as well
as modeling of the initial transient. Often this number is not very
critical, and it can be somewhat higher than the number of poles.

The zooming factor Kzoom can be selected so that the analysis
bandwidth contains most of the energy of the resonances to be mod-
eled, keeping the order (number of poles) manageable.

3. POLE-ZEROMODELING BY KAUTZ FILTERS

The Kautz filter inherits its name due to a rediscovery in the early
signal processing literature [7, 6] of an even older mathematical
concept related to rational representations and approximations of
functions [8]. The generic form of a Kautz filter is given by the
transfer function

Ĥ�z� � ∑N
i�0wiGi�z�

�
N

∑
i�0

wi

��
1� ziz

�

i

1� ziz
�1

i�1

∏
j�0

z�1� z�j
1� z jz

�1

�
� (3)

where wi, i � 0� � � � �N, are somehow assigned tap-output weights.
The orthonormal Kautz functions Gi�z�, i � 0� � � � �N, are deter-
mined by any chosen set of stable poles: �z j�

N
j�0, such that �z j��1.

Figure 2 is hopefully more instructive than formula (3). The time-
domain counterpart of (3) is ĥ�n� � ∑Ni�0wigi�n�, where functions
�gi�n�� are impulse responses or inverse z-transforms of functions
�Gi�z��. The meaning of orthonormality is specified, e.g., by using
the time-domain inner products, �gi�gk� :�∑∞

n�0 gi�n�g
�

k�n�� 0 for
i �� k, and �gi�gi� � 1.

1Only the poles with positive imaginary component are used in FZ-
ARMA analysis, representing the complex-conjugate pole pairs needed for
real-valued filter model.

Figure 2: The Kautz filter. For zi�0 in (3) it degenerates to an FIR
filter, for zi�a��1�a�1, it is a Laguerre filter where the tap filters
can be replaced by a common pre-filter.

Figure 3: A real Kautz filter [6], where the normalizing coefficients
�pi�qi� can be absorbed into �c i�.

In our case, a given target response h�n� is approximated as

ĥ�n� �
N

∑
i�0

cigi�n�� ci � �h�gi�� (4)

that is, as an orthogonal decomposition (or projection) of h�n�with
respect to a chosen set of basis functions. Due to the orthogonality,
the approximation is inherently in the least-square form, the con-
tribution of each component is explicitly at hand, and the approx-
imation is independent of block (or pole) ordering, which provide
useful means for model reduction, monitoring, and extensions. In
our case of complex conjugate poles, an equivalent real Kautz filter
construction [6], depicted in Fig. 3, is used to prevent dealing with
complex (internal) signals and filter weights.

Kautz filters and their audio applications are described in more
detail in [9]. A small Matlab Toolbox of Kautz modeling can be
found in: http://www.acoustics.hut.fi/software/kautz/kautz.htm.

4. MODELING STRING INSTRUMENT SOUNDS

In [4], [5], and [9] we have applied high-resolution signal modeling
techniques, FZ-ARMA and Kautz filters, to various cases of string
instruments. However, parametric (pole-zero) models that have rel-
atively direct interpretation from a physical point of view and which
can be applied in various tasks of sound synthesis and music acous-
tics, need to be developed. One important aspect is also to keep in
mind the perceptual factors, i.e., to include features that are impor-
tant from a perceptual point of view.

The methods presented here are applicable to sounds where a
short excitation, such as a pluck in the guitar or a hit by hammer in
the piano, is applied to an approximately linear and time-invariant
resonator system2. We will first elaborate the acoustic guitar, a pop-
ular instrument with well known basic properties, but with surpris-
ingly rich fine details revealed by recent studies [10, 11].

4.1 Case Study 1: The Acoustic Guitar

In the case study our goal is to make an acoustic guitar model where
the response of the string, the body, and the excitation are resolved
as components of an ARMA model. Although these components
are not direct physical properties of the instrument, they can be

2Thus for example the violin is not applicable, at least directly.
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Figure 4: Low-frequency spectrum for the original plucked sig-
nal spectrum (dashed line) and the residual spectrum when the FZ-
ARMA modeled string modes are removed (solid line).

used in physics-based analysis and synthesis. We will take a typ-
ical example of a plucked classical guitar response, recorded in an
anechoic chamber3.

4.1.1 Extraction of string modes

The most prominent signal components in a plucked guitar re-
sponse are the partials of string vibration, see the spectral peaks in
Fig. 1. Theoretically eachbasicmode correspondsto a sinusoidwith
exponential decay. As already mentioned, the two polarizations of
vibration, when summed up in the radiated signal, may introduce
beating or two-stage decay in the envelope. Thus two pole pairs
are needed if the two-polarization effects are prominent. In practice
there may be other phenomena as well [10, 11] that may require
even a higher number of pole pairs.

The selection of the number of pole pairs for the FZ-ARMA
analysis can be done in several ways. It can be chosen (a) manually
by inspection for each partial, (b) it can be iterated, from one pole
pair up, until the model fitting does not improve anymore, or (c) it
can be a fixed number.

In the following case the sound that we analyzed was played
on the open E4 string (329.6 Hz), plucked in the tirando style. In
the spectrum (Fig. 1) there are prominent partials up to about 10
kHz. This range contains 28 partials. When each partial is mod-
eled by two modes (pole pairs), this makes together 112 poles to
be estimated by FZ-ARMA analysis. The number of zeros of four
per partial was found appropriate. The frequencies of the partials
can be approximated easily from the spectrum. Note that due to the
inharmonicity of strings, the upper partials are higher in frequency
than pure harmonics [3], which is to be taken into account for the
frequencies of zooming. In this particular case a zooming factor of
Kzoom = 100 was applied.

The obtained pole set can now be used to evaluate the Kautz
filter coefficients ci (see Eq. (4)), that determine the zeros of the
transfer function. When the Kautz model is used for resynthesis to
obtain ĥ�n�, this modeled response is still found to deviate from the
original in two ways: the initial transient is different and the body
modes of the guitar are not well included. We will next elaborate
the separation of the body response.

4.1.2 Extraction of main body modes

The string modes can be removed in several ways from the orig-
inal signal, none of the methods being without problems 4. We
can subtract the Kautz-model response, based on the string poles
(see above), from the original, i.e., hresid�n� � h�n�� ĥ�n�, or we
can inverse filter the original by the Kautz-model, i.e., Hresid�z� �
H�z��Ĥ�z�. The former one may not fully remove the string mode
resonances and the latter one may result in new resonances in the

3We are grateful to Mikael Laurson (guitar player), Henri Penttinen and
Jussi Pekonen (recording engineers) for providing the sound examples.

4If the body response is available separately, for example from an impact
hammer hit, it can be used in body response modeling.
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Figure 5: The first 40 ms of the original plucked string signal (top)
and the response of the Kautz model (bottom).

residual if there are sharp zeros in the Kautz model. In the present
case we obtained the best results by subtracting from the original
signal the FZ-ARMA modeled partials (remapped back from the
zoomed frequency domain). Figure 4 shows the spectrum of the
residual for the frequency range of 0–1.5 kHz in comparison to the
original spectrum.

Now the residual contains the most part of the body resonances
and the pluck excitation. Notice that close to the string mode fre-
quencies the residual spectrum cannot be very precise because per-
fect cancellation of the string modes requires very high accuracy
of their estimation, and a part of the body effect may have been
included already in the string mode estimation.

In our case studywe next apply pole-zero modeling to the resid-
ual achieved above to extract a set of body mode poles. This can
again be done by various means, but in our case a warped BU-
method [12] was used, which combines warping techniques and
a particular pole generation procedure for Kautz filtes. The low-
frequency region was emphasized by applying a warping parameter
value 0.75, which focuses frequency resolution to the lowest body
modes. From a generated set of 80 poles two weaker poles were
omitted and the remaining set of 39 pole pairs was chosen to rep-
resent the resonant body behavior. These body model poles were
included in the pool of final Kautz model poles.

4.1.3 Modeling of source excitation

When a Kautz model is made using the poles from the string and the
body analysis, the initial transient of the reconstruction still deviates
notably from the original sound, although the perceptual difference
is not very prominent. The effect of plucked transient can be in-
cluded simply by adding zero-valued poles into the pole set of the
Kautz filter. This includes “FIR stages” into the Kautz filter, and if
these stages are chosen as the leading block, it actually corresponds
to an FIR subfilter. Thus combining the poles from string partials,
from the body analysis, and a proper number of zero-valued poles
yields an excitation-string-body model, optimal to the pole set in
the least-square sense.

4.1.4 Full Kautz model

In the E4 string case study we selected 400 FIR block taps to take
care of the initial transient. In fact the resulting Kautz model re-
sponse then replicates the original signal for that number of first
samples, i.e., for about 400/44100� 9 ms. Figure 5 depicts the first
40 milliseconds of the original (top) and the resynthesized (bottom)
signal. Small differences can be observed in the range of 9 to 15
ms. Figure 6 illustrates the spectral comparison of the original and
the resynthesis. The more complex detailed structure found in the
original spectrum is partly due to background noise from recording.

In a listening evaluation of the model the most prominent differ-
ence of the modeled and the original signal is a minor background
noise in the original recording5. As another difference, the origi-

5Thus the method works also in denoising of recorded sounds.
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Figure 6: Spectra of the original (upper, dotted) and the resynthe-
sized guitar sound (lower, solid) for 0–5 kHz. The synthesized spec-
trum is lowered by 20 dB.
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Figure 7: Tap coefficients of the Kautz model for different parts of
the model. The FIR part is amplified by factor 15 as the dotted line.

nal one exhibits a bit slower decay of low partials after 1.5 seconds
from the beginning (two-stage decay), which is not in the model,
but could be included by fine-tuning of the modeling process. Also
the body response is perceived by some subjects weaker than in the
original one. These differences are hardly noticeable, and by fine-
tuning they can be made inaudible. The model order can also be
reduced considerably from the case above without radical audible
degradation of the result.

It is important to understand the characteristics of the Kautz
structure, see Fig. 2. The filter can be seen as a hybrid between
series and parallel filter structures. In practice it works more like
a parallel filterbank, whereby the substage tag outputs add up to
the final output. As a consequence the string partial submodels are
almost independent of each other. A single partial can be shifted in
frequency or scaled by amplitude, or even eliminated, and the rest
of the model remains practically the same. This makes the Kautz
modelflexible in modifying andmorphing string instrument sounds.

This also means that the string part, the body part, and the FIR
block work as a parallel connection. This deviates from what would
be intuitively desirable, i.e., having them in cascade: excitation��
string � � body. Particularly the excitation is not fed to the rest
of the filter but it is fed to the output, and the rest of the filter is
excited by impulse through a delay having the length of the FIR
block. Decomposing the model into a cascaded structure remains a
challenge for future research.

An interesting view of the model can be obtained by plotting
the tap coefficients of the real-valued Kautz model. Figure 7 shows
them, separated into sections of the FIR part, the string part, and the
body part. The FIR coefficients can be considered as a wavetable,
feeding directly to the output. The tap coefficients for the string and
body parts determine the amplitudes and phases of the correspond-
ing modes. In Fig. 7 they are ordered from low to high frequencies,
and they characterize the amplitudes of the correspondingmodes.

5. DISCUSSION AND CONCLUSION

Parametric models of musical instrument sounds can be used for
many purposes. Here we include a short discussion on the applica-
tion scenarios.

� Sound synthesis: The models can be used for very high qual-
ity sound synthesis, although they have some drawbacks, such
as computational load due to high filter order and complexity of
controlling the parameters for dynamic sound synthesis. The pa-
rameters can also be used as a starting point to calibrate simpler
andmore efficient synthesismodels, such as digital waveguides.

� Music acoustics: Although the pole-zero model parameters can-
not immediately be interpreted as physical parameters, they can
be utilized in many ways in music acoustics studies.

� Psychoacoustics: Psychoacoustical studies on musical instru-
ment sounds is an emerging area of research [13]. Parametric
models are highly useful there, because realistically modeled
sounds can be modified flexibly in order to study how we per-
ceive different attributes and their variation.

� Parametric audio coding: The methods presented have potential
in parametric audio coding, but they are not as such applicable
to polyphonic sounds even when a single instrument such as the
guitar is coded. This remains a challenge for future research.

In this study we have shown that high-resolution pole-zero
modeling techniques, particularly the FZ-ARMAmethod andKautz
filters, are powerful ways to decompose plucked and struck string
instrument sounds into parametric forms that find applications rang-
ing from sound synthesis to basic research in music acoustics.
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