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ABSTRACT 

In the last decade alpha-stable distributions have become a 
standard model for impulsive data. Especially the linear 
symmetric alpha-stable processes have found applications in 
various fields. When the process parameters are time-
invariant, various techniques are available for estimation. 
However, time-invariance is an important restriction given 
that in many communications applications channels are 
time-varying. For such processes, we propose a relatively 
new technique, based on particle filters which obtained great 
success in tracking applications involving non-Gaussian 
signals and nonlinear systems. Since particle filtering is a 
sequential method, it enables us to track the time-varying 
autoregression coefficients of the alpha-stable processes. 
The method is tested both for abruptly and slowly changing 
autoregressive parameters of signals, where the driving 
noises are symmetric-alpha-stable processes and is observed 
to perform very well. Moreover, the method can easily be 
extended to skewed alpha-stable distributions. 

1. INTRODUCTION 

With the availability of increasingly higher computing 
power, the particle filters have found practical applications 
in many disciplines, such as communications, astrophysics, 
biomedicine and finance [1]. In its most general form, parti-
cle filters enable us to obtain the optimal Bayesian solution 
of the systems that can be modelled by non-Gaussian and 
nonlinear state-space equations [1-2]. For such systems, if 
the signals are non-stationary, particle filters can still pro-
vide us with the optimal Bayesian solution, since the estima-
tion is performed sequentially. However, other Bayesian 
techniques, such as the Markov Chain Monte Carlo 
(MCMC) [3], can only be used for stationary signals, since 
these methods have batch processing nature and discard the 
time information of the signals.  
Generic techniques, that are developed for non-Gaussian 
signals can be applied to alpha-stable (α-stable) processes, 
since they possess non-Gaussian distributions too except for 
α=2, corresponding to the Gaussian case. For stationary 
cases, MCMC techniques have been applied to estimate the 
parameters of an α-stable process [4]. However, there is a 
limited number of studies that have been done for handling 
the non-stationary cases [5]. In literature, particle filters are 
utilised to estimate the time-varying autoregressive (AR) 
coefficients of a process, which is driven by a Gaussian 

noise and embedded in an additive noise, modelled by a 
symmetric α-stable distribution (SαS) [6]. 
In literature [7-8], it is known that the particle filters can suc-
cessfully estimate the time-varying autoregressive coeffi-
cients of non-Gaussian signals, such as the Mixture of Gaus-
sian and Laplacian distributed ones. Motivated by these, a 
novel method for estimating the time-varying AR coefficients 
of α-stable processes is proposed in this work. 
The paper is organized as follows: First, the problem is stated 
formally and, a brief background information on α-stable 
processes and particle filters is presented. Then, the proposed 
method is introduced and the performance analysis is illus-
trated by the computer simulations. 
 
1.1 α-stable Processes 

 
It is well known that, if we add a large number of random 
variables of different distributions, the summation variable 
tends to be more Gaussian distributed as the number of 
terms goes to infinity. This is known as the Central Limit 
Theorem (CLT). Moreover, it is necessary that each added 
random variable is of finite variance. Otherwise, CLT be-
comes insufficient and Generalized Central Limit Theorem 
should be used [9]. In this case, the limiting distribution is 
an α-stable distribution. α-stable distributions are defined in 
terms of their characteristic functions, since their probability 
density functions (pdf) cannot be obtained analytically, ex-
cept for some limited cases (α=2, β=0 Gaussian; α=1, β=0 
Cauchy; α=0.5, β=-1 Pearson) [10, p. 14].The characteristic 
function of α-stable distributions is given as follows: 
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Here, the parameters are defined within the following inter-
vals: 11,20,0, ≤≤−≤<>∞<<∞− βαγδ . 

 
       (1b) 

 
                  
 

As shown above, an α-stable distribution is defined by four 
parameters. Among these, α and β are known as the shape 
parameters and they determine the thickness of the tails and 
the symmetry of the distribution, respectively.  
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For example, in our work, SαS are used. Thus, in our case β 
parameter is taken to be zero. As α gets smaller, the distribu-
tions become more impulsive. δ and γ are known as the 
measures of the location and the dispersion around it, re-
spectively. In this work, standard (δ = 0, γ = 1) α-stable dis-
tributions are considered and they can be generalized easily 
by using variable transformations. So, for standard SαS dis-
tributions, (1a) takes the following form: 
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It is well known that AR processes are obtained by filtering 
a white noise with an all-pole filter. The difference equation, 
corresponding to such a process, is given as follows: 
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Above, xk(t) parameters are known as the autoregressive 
parameters and v(t) is  the driving process. The estimation of 
the AR coefficients from observation y(t) can be performed 
by the well known Yule-Walker equations, in case of Gaus-
sian driving processes [11]. In case of α-stable driving proc-
esses, methods, such as the Iteratively Reweighted Least 
Squares [12], Generalized Yule-Walker [10], MCMC based 
techniques [4] and others [13] have been proposed in the 
literature. However, in all these methods, the AR coeffi-
cients are assumed to be time-invariant. In our work, we 
consider the case where these parameters are time-varying.  

 
1.2 Particle Filters 

 
Particle filters are used in order to sequentially update a 

priori knowledge about some predetermined state variables 
by using the observation data. In general, these state vari-
ables are the hidden variables in a non-Gaussian and nonlin-
ear state-space modelling system. Such a system can be 
given by the following equations: 
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where xt and yt represent the hidden state and the observa-
tion vectors at current time t, respectively. Here, the process 
and observation noises are denoted by vt and nt , respec-
tively. ft and ht are known as the process and observation 
functions and in their most general case, they are nonlinear. 
Also, the noise processes in (4) are modelled to be non-
Gaussian. Here, the objective is to sequentially obtain the a 

posteriori distribution of the state variables obtained via the 
observation data gathered up to that time, i.e. 

0: 1:( | )t tp x y . 

If both the process and the observation noises are Gaus-
sianly distributed and the corresponding functions ft and ht 
are linear, then the desired a posteriori distribution is also 
Gaussian and sequentially estimating the mean and variance 
is sufficient instead of the whole pdf. In this situation, the 
optimal solution can be obtained by the Kalman filter [14]. 
For this condition, (4) is expressed as follows: 
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where Ft and Ht are linear operators and the noise distribu-
tions are Gaussian. For both (4) and (5), the optimal Bayes-
ian solution for the a posteriori pdf is given as follows [1-2]: 
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In general non-Gaussian situations we may not always have 
analytical expressions for distributions. Thus, the distribu-
tions are expressed in terms of samples, to approximate 
them. These samples are called as the particles. The expres-
sion for the a posteriori pdf can be given in terms of parti-
cles as follows: 
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where i

tw , x0:t
i , δ(.) denote the weight, ith particle and the 

Kronecker delta operator, respectively. Then, expectations 
for function g(.) can be obtained by the following equation: 
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where g(.) is a function depending on the estimate [1]. Here, 
the major problem is to draw samples from an analytically 
inexpressible non-Gaussian distribution and estimate the 
integral given by (8) using Monte Carlo integration tech-
niques, shown as follows: 
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where i

tw~ denote the normalized weights given as: 
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The particles that take place in equations (7) and (9) are 
drawn by a method known as the “Importance Sampling” 
[1-2] and the corresponding “Importance Weight” for each 
of them is denoted by i

tw  as defined as follows: 
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where q(.) function is called as the “Importance Function” 
and drawing samples from this pdf is easier than that of 
original distribution [1-2]. However, importance sampling 
shown in (11), can be used in batch processing techniques 
and should be modified as follows for the sequential appli-
cations [1-2]: 
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But, as a consequence of this sequential modification, a 
phenomenon, known as  “Degeneracy”, arises as a problem 
and causes the importance weight of each particle, but one, 
to converge to zero as time evolves [1-2]. In order to avoid 



the degeneracy problem, “Resampling” is performed as an 
additional step and by this procedure, particles with high 
importance weights are replicated, while the others are dis-
carded. By doing so, we can approximate the desired pdf in 
time [1-2]. 

2. THE PROPOSED METHOD 

 
In this work, we propose a new method, which enables us to 
sequentially track the time-varying AR parameters of an α- 
stable process from the observation data. The corresponding 
AR model is given in (3). Here, these AR coefficients are 
expressed in terms of particles and form the state vector, 
which is given by the following the state-space equations: 
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where vectors are defined as yt-1=(yt-1,..........,yt-K)T and 
xt=(x1(t),......,xK(t))T . Moreover, in order to be able to model 
the system correctly, the statistical properties of the process 
noise, given in the first equation of (13), should be known. 
However, when we do not have any a priori information 
regarding to the states, as in this case, an additional estima-
tion technique should be used to model the process equation 
accurately. Since there is no a priori information, the state 
transition matrix is taken to be the identity matrix. When 
there is no information about the process noise, the method 
proposed in [7-8] can be used in order to sequentially model 
the covariance matrix of the zero mean process noise from 
the past data. That is, the process noise is modelled by a 
Gaussian distribution. Here, in case of a scalar state variable, 
the variance of the process noise can be estimated from the 
variances of the particles regarding to the previous AR coef-
ficients as follows: 
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where λ is called as the “Forgetting Factor” and takes values 
between zero and one. In case of vector variables, the co-
variance matrix of the process noise vector is estimated as 
follows: 
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where Σk is a diagonal matrix, whose elements are variances 
of the particles, corresponding to the related AR coefficient 
at time (t-1). After forming the state-space equations, the 
next issue is the choice of the importance function. Here, we 
choose the a priori transition pdf, which is given by 
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t t t t t
q p− −=x x y x x . As a result of this selection, the 

importance weight calculation (12) of each particle becomes 
as follows [1-2, 7-8]:  
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where ( | )i

t tp y x  is the likelihood term. Since the observation 

noise nt of (13) has an α -stable distribution, this term cannot 
be estimated analytically, except for a very limited number 

of cases, which are mentioned at the introduction. Thus, in 
order to estimate these importance weights, we take the in-
verse Fourier transform of the related standard characteristic 
function numerically at each time instant and evaluate its 
value for the observation data as follows: 
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3. EXPERIMENTS 

In this section, the theory given in the previous sections is 
justified by several computer simulations. In these simula-
tions, a synthetically generated first order AR process is 
used, which can be given in the following form: 
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where the AR coefficients are time-varying and represented 
by x(t). The driving process n(t) is generated from various α- 
stable distributions, as explained below. In all cases the dis-
tributions are symmetric (β = 0) and standard (γ = 1, δ = 0). 
For each experiment, 20 ensembles are used in order to es-
timate the Normalized Mean Square Errors (NMSE), which 
can be given as follows:  
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where i denotes the related ensemble and )(),(ˆ txtxi

denote 

the Minimum Mean Square Estimate (MMSE) and the origi-
nal AR coefficients, respectively. In all experiments, residual 
resampling [15], 100 particles and 1000 time samples are 
used.  
Two experiments are conducted: 
a)  AR coefficient is taken to be changing sinusoidally with 
time. The effect of various α parameters is examined and the 
estimated AR trajectories and their instantaneous NMSE are 
plotted as a function of time (Fig. 1). 
b)  AR coefficient is taken to be 0.99 until the 500th sample, 
where it changes abruptly to 0.95. This is examined for 4 
different α parameters (Fig. 2). 

4. DISCUSSION AND CONCLUSIONS 

In this work, a new method is proposed in order to estimate 
the time-varying AR processes, which are driven by sym-
metric-α-stable processes. The performance of the method is 
tested for several values of the α parameter and it is ob-
served to perform very well and the quality of the MMSE of 
the AR coefficients increases as the value of the α decreases, 
that is, as the process becomes more heavy-tailed. This is 
illustrated in Fig. 1. It is also noted that the NMSE value at 
the peaks of the AR waveform decreases significantly. This 
is due to the slow variation of the AR coefficients through-
out these regions. Tracking performance in case of an 
abruptly changing AR coefficient is shown in Fig. 2. When 
Figs. 1 and 2 are compared, it is seen that the quality of the 
estimates increase as the time variation of the AR coeffi-



cients decrease. As a final remark, the proposed method can 
easily be extended for the skewed (β ≠ 0) α-stable distribu-
tions by including the β parameter in (2) and (17). As a fu-
ture work, the skewed case will be examined and parameters 
of the α-stable distribution will also be estimated beside the 
AR coefficients. 
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       Fig. 1 Estimation of the sinusoidally varying AR parameter for different α values: a) α = 0.5, b) α = 1, c) α = 1.5, d) α = 2 

Fig. 2 Estimation of the abruptly varying AR parameter for different α values: a) α = 0.5, b) α = 1, c) α = 1.5, d) α = 2 
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