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ABSTRACT

Multimedia applications such as video and image processing
are often characterized by a large number of data accesses. In
many digital signal-processing applications, the array access
patterns are regular and periodic. In these cases, it becomes
feasible and efficient to generate optimized Pipelined Mem-
ory Access Controllers. This technique is used to improve
the pipeline access mode to RAM by creating specialized
hardware components for generating addresses and packing
and unpacking data items. In this paper we focus on the de-
sign, implementation and validation of external memory in-
terfacing modules which can efficiently handle predictable
address patterns as well as unpredictable (dynamic address
computations) in a pipeline way. In a second time, we ana-
lyze the benefits of balancing dynamic address computation
from datapath to dedicated units in the memory controller,
optimizing bitwise of operators, and data locality (decreas-
ing bus transfers for power efficient design).

1. INTRODUCTION

Multimedia applications such as video and image processing
are often characterized by a large number of data accesses. In
such applications, the memory accesses are often the limit-
ing factor to the execution speed of Digital Signal Processing
(DSP) hardware processors. Performances highly depend on
the memory architecture: hierarchy, number of banks, data
placement, etc. Memory design also affects the power con-
sumption which is a critical feature in embedded applica-
tions. In the same time, custom hardware design increases
the design time.

On one hand, actual researches in Multimedia applica-
tions try to reduce algorithm calculation complexity using
ad-hoc solution composed of conditional computations (for
example transformation of the Full Search algorithm for
Block Matching to a Three Step Search algorithm [7] ) lead-
ing to execution hazards that may occur with conditional
computations and dynamic macro-bloc selection. On the
other hand, other researches based on architectural imple-
mentations of these algorithms under real-time constraints
try to exploit the parallelism of the computations. In that
case optimized circuits are obtained for regular algorithms
without execution hazard. This is also true for the memory
architecture, which is more advantageous for data-flow ap-
plications where the sequence of accesses to the memory is
predictable.

However, for most of the actual signal and image applica-
tions the entire access sequence to the memory is not known
a priori. This prevents the designers to handle efficiently the
repetitive sequences of the application. So according to the

application class, the design flow for optimal area and power
consumption design generation to use is different.

In this paper, we make the following contributions: we
present a new address memory sequencer architecture which
can perform pipeline memory accesses for static and dy-
namic access sequences. We show how to include dynamic
memory access constraints in a Data Flow Graph (DFG).
This technique will be extended in a second time with the
dynamic address computation balancing between the data-
path and the address sequencer for performance increase and
data transfer reduction in a low-power perspective. The re-
sults presented in this paper support the claim that it is pos-
sible to exploit application specific information and integrate
that knowledge in a custom access sequencer module for re-
ducing the overhead associated with memory hazardous ac-
cesses.

2. RELATED WORK

A good overview about memory synthesis and optimization
can be found in [5]. Most researches for control, intensive
applications are based on a random access memory (RAM).
In these kinds of applications, a common RAM based model
is used; it accepts a binary coded address and decodes it using
built-in decoders into row and column select signals because
of un-predictable memory access.

In many digital signal-processing applications, the array
access patterns are regular and periodic. In these cases, it
becomes feasible and efficient to generate the necessary ad-
dress patterns directly from memory address sequencer (us-
ing dedicated counter[2], etc.). Data processing can easily
be speeded up through pipelining and other forms of paral-
lelism. In the simplest case where the memory accesses can
be determined statically, the compiler can schedule the order
in which the accesses occur. The scheduler can be imple-
mented by example in hardware using a Finite State Machine
(FSM).

Sequencer architecture allows un-correlation between the
datapath unit synthesis and its optimizations and the se-
quencer architecture synthesis and its optimizations. As
shown in figure 1, only the produced or consumed data are
transferred from one unit to the other (the address transfers
are useless since their sequences are static a priori).

Studies have demonstrated that custom address genera-
tor created from the access patterns can be optimized to ob-
tain optimal memory architectures. For example, these se-
quencers can be optimized by applying minimizing power
consumption techniques on buses [3], accessing adjacent
data in memory to limit the commutations on address buses
[1]. Performance optimizations can also be performed. In
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Figure 1: Sequencer-based Architecture for Predictive Data
Transfer Sequence

[4], the author examines the impact on area and performance
of memory access related circuitry by using simplified ar-
chitectures for the address generation circuit. This tech-
nique improves the design frequency for important access
sequences.

Nevertheless, these approaches are limited to predictive
access patterns. The sequencer generation also allows the
designer to decouple the concerns of memory interfacing
and static scheduling of possible memory accesses for ap-
plications with streamed data [6]. This technique is used to
improve the pipeline access mode to RAM by creating spe-
cialized hardware components for generating addresses and
packing and unpacking data items (figure 2). Unfortunately,
this approach and the sequencer implementation model do
not support dynamic address calculation and the synthesis
process constraints the controller generation without interac-
tion for avoiding over constraints.

Our researches in this paper differ from these studies.
Common approaches create a centralized memory scheduler
that fetches data from an external memory into the datapath
are based only on predictable access patterns. Whereas our
approach relies on both, an architecture independent view of
the data path and a memory controller which is decoupled
from the datapath execution controller, thus allowing unpre-
dictable memory accesses.

3. IMPLEMENTATION MODEL

Our goal is to generate an optimal memory sequencer sup-
porting dynamic addressing access in a mainly deterministic
data transfer sequence. We present in a first time an architec-
ture allowing dynamic addressing, and then in a second time
an extended architecture able to make internal bitwise opti-
mized address computations in the sequencer, avoiding repet-
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Figure 2: Park’s Sequencer Architecture

itive address transfers between the datapath and the memory
sequencer.

3.1 Dynamic Address Access Sequencer

Our first sequencer architecture supposes that all the dynamic
address computations are performed inside the data path
unit and then transferred to the memory sequencer thought
a data/address bus. The sequencer proposed in figure 3 is
composed of 4 different units: a memory access scheduler,
a dynamic address controller, an address generator and an
address translation table.

Buses from the datapath are connected to the memory
using a multiplexed crossbar. This crossbar is piloted by
the memory access scheduler, which knows the memory ac-
cess sequence. This scheduler controls the address generator
progress in a synchronous manner from the datapath point
of view. Dynamic address accesses to the memory will go
thought the address translation table, this table will translate,
the logical address or index to the couple (memory bank,
address). This translation table allows the designer to bind
pieces of a vector in different memories to exploit applica-
tion access parallelism.

Depending on the targeted memory bank and the dy-
namic address access usage in the current cycle, the dy-
namic access controller will route the correct commands
(read/write) and the physical address to the right memory
bank.

This sequencer architecture allows dynamic memory ac-
cesses to be realized in a “static” sequencer approach. This
also allows the designer to bind freely the split vectors in dif-
ferent memory banks.

3.2 Memory Sequencer Architecture for Dynamic Ad-
dress Computation Balancing

The previously presented architecture allows dynamic ad-
dress memory accesses using a sequencer architecture ap-
proach. This architecture allows local optimizations between
this unit and the memory banks and it also reduces the mem-
ory address transfers from the datapath to the memory. We
now extend it reduction by inserting computation units dedi-
cated to the dynamic memory address in the sequencer unit.
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Our second architecture is presented in figure 4. A dedi-
cated datapath is added to the translation table for the address
computations.
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Figure 4: Extended Sequencer Architecture

This approach provides interesting gains for high perfor-
mance circuit designs: in pipelined architectures, data trans-
fers between the datapath and the sequencer can use more
than one clock cycle (low-speed memories by example). In
these cases, localizing address computations in the sequencer
provides important latency gain by avoiding address transfers
between the units. The address traffic reduction between the
datapath and the sequencer also reduces the line switching,
i.e. the power consumption. Furthermore this approach al-
lows decreasing the bus requirement between the datapath
and the sequencer.

This internal datapath is dedicated to the dynamic address
computation (i.e. logical and arithmetic operations, like in-
crement, shifts, etc.). These operators are optimized for ad-
dress computation versus the datapath unit because address
operator bitwise can be easily reduced. Another advantage
from this approach comes from the locality of the constants
or variables implied in the address computation.

The address computation unit is composed of operators
and registers. The registers stores the addresses needed for
dynamic addressing during computation and then transfer
them to the address translation table when needed for the dy-
namic memory access.

4. DESIGN FLOW

In order to generate a memory sequencer architecture from a
signal or image application, we present in figure 5 a design
flow which allow the designer to handle the sequencer con-
straints during the circuit design process. The starting point
of this design flow is a Data-Flow Graph modelling the be-
havioural of the application and optionally memory mapping.

The definition of the memory architecture (especially
data mapping) can be performed in the first step of the over-
all design flow. To achieve this task, the designer can use
advanced compilers such as Rice HPF compiler, Illinois Po-
laris or Stanford SUIF [5]. Indeed, these compilers auto-
matically perform data distribution across banks, determine
which access goes to which bank, and then schedule them to
avoid bank conflicts. The Data Transfer and Storage Explo-
ration (DTSE) method from IMEC and the associated tools
(ATOMIUM, ADOPT) are also a good mean to determine a
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Figure 5: Design Flow

convenient data mapping. Otherwise the designer may de-
cide to make this task later. Our methodology can indepen-
dently handle the two approaches in a unique design flow.

Data transfer annotations

The first step of our design flow for dynamic address se-
quencer generation is the data flow graph annotation (fig.
6a, 6b): this annotation step aims at handling the timing re-
quirements for data and address transfers from one unit to the
other (Communication unit, Memory units and the Datapath
unit). This also handles the dynamic address accesses re-
quirements. This transformation can be guided by the mem-
ory mapping information given by the designer if the data
placements were done before synthesis in the design flow.
These annotations also contain information on the locality of
the operations and data memorization (memory, register in
datapath) In this first approach, all the dynamic address com-
putations are allocated in the datapath unit.

Computation Balancing Metric

In a second time, the dynamic address computation balanc-
ing algorithm is applied to the previously annotated graph
in order to move some dynamic address computations from
datapath to the memory sequencer unit. The decision metric
used to balance the address computations take different crite-
ria into account: the number of data-transfer needed, the time
increase/decrease of critical paths, addresses bitwise versus
the datapath bitwise, etc.

The dynamic address computation balancing algorithm
is applied in a static manner to the annotated graph. All
the address computations are evaluated for balancing deci-
sion. If the balancing decision optimizes the system, then the
graph is transformed: transferring nodes are added, others
are deleted and the locality attributes for nodes are changed.



An example of these transformations is shown in figure 6 (b
and ¢).

Datapath and Memory Sequencer Synthesis

Then the designer can implement its datapath by hand cod-
ing or using a high-level synthesis tool without regarding the
memory implementation problems. At the end of the process,
the datapath architecture is generated as sequencer datapath.
In order to generate the entire sequencer, other information
is generated as access pattern including dynamic address ac-
cess time slot.

Memory Sequencer Hardware Generation

At the end, the entire sequencer is generated using the pre-
viously generated information on the access patterns. With
this information the Memory Scheduler and the Memory Ad-
dress Generators can be implemented using local optimiza-
tions. The internal datapath dedicated for dynamic address
computation is then inserted in the sequencer architecture.
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balanced Graph

(b) Data Transfert
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(a) Original graph,

Figure 6: Extended Data-Flow Graph Example

We are currently developing a tool that will automate this
important system design step.

5. EXPERIMENTS

We applied our sequencer design approach on the Three Step
Search algorithm [7]. In this algorithm, an un-deterministic
access sequence is applied. In the control architecture, we
consider the address transfer of the reference macro bloc plus
the dynamic bloc accesses. In the second one all 5 first bloc
transfers are know a priori as the reference bloc transfer.
And in the second optimized sequencer architecture we only
transfer the base address for the dynamic macro bloc access.

Results are presented in figure 7. A sequencer for de-
terministic memory access can be use in data-dominated ap-
plication using low control operations. The results show the
address transfers count from a normal approach using data-
computation units for address computation in the sequencer.
This is useful in a pipeline architecture when address trans-
fers take more than one clock cycle. Moreover our sequencer

Macro Bloc  |Search Window JAddr. Transfert
Control Architecture 896
First Sequencer Architecture 8X8 16x16 512
Second Sequencer Architecture 8
Control Architecture 3584
First Sequencer Architecture 24x24 48x48 2048
Second Sequencer Architecture 8

Figure 7: Sequencers results versus Control Architecture

permits predictive and pipeline memory access as said in [6]
which is not taking in account in these experiments.

6. CONCLUSION

In this paper we have presented a new sequencer architec-
ture for DSP applications with dynamic memory accesses.
We show that our design flow allows the designer to freely
optimize each unit of his design. Future work will be to in-
corporate the sequencer generation in a High-Level Synthe-
sis design flow to automatically generate the entire design.
We will also handle conditional memory accesses, which are
actually, converted to non-conditional accesses by specula-
tively fetching all of the potentially required.
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