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ABSTRACT

We propose a new blind source separation (BSS) algorithm for
multiple source signals. In the proposed algorithm, independent
component analysis (ICA) and beamforming are combined to re-
solve the slow-convergence problem through optimization in ICA.
The proposed method consists of the following three parts: (a)
frequency-domain ICA with direction-of-arrival (DOA) estimation
using a Lloyd clustering algorithm, (b) null beamforming based on
the estimated DOA, and (c) integration of (a) and (b) based on the
algorithm diversity in both iteration and frequency domain. The
separation matrix obtained by ICA is temporally substituted by the
matrix based on null beamforming through iterative optimization,
and the temporal alternation between ICA and beamforming can
realize fast- and high-convergence optimization. The results of the
source separation experiments reveal that the source-separation per-
formance of the proposed algorithm is superior to that of the con-
ventional ICA-based BSS method, even under reverberant condi-
tions.

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimating orig-
inal source signals only from the information of the mixed sig-
nals observed in each input channel. This technique is applicable
to high-quality hands-free speech recognition systems. Many BSS
methods based on independent component analysis (ICA) [1] have
been proposed for the acoustic signal separation [2, 3, 4, 5]. In this
paper, we address the complex-valued ICA i.e., frequency-domain
ICA (FDICA) [2]. The FDICA-based BSS is one of the promis-
ing approach for sound segregation. There exists, however, a slow-
convergence problem which is due to the nonlinear optimization
inherent in ICA [5].

We have solved this problem in a specific case of two sources
and two microphones by introducing the fast-convergence algo-
rithm combining ICA and beamforming [6, 7]. However, this al-
gorithm cannot be extended to the source-separation problem of
multiple sources and multiple microphones (more than 2 sources
with more than 2 microphones). In order to solve this problem, this
paper describes a new extended algorithm in which ICA and beam-
forming are combined for the blind separation of multiple sources.
The proposed algorithm consists of the following procedures: (a)
frequency-domain ICA with estimation of the DOA of the sound
source using a Lloyd clustering algorithm [8], (b) null beamforming
based on the estimated DOA, and (c) integration of (a) and (b) based
on the algorithm diversity in both ICA iteration and frequency sub-
band. The temporal utilization of null beamforming through ICA it-
erations achieves fast- and high-convergence optimization. The sig-
nal separation experiments with 3 sources and 3 sensors show that
the proposed algorithm outperforms the conventional ICA-based
BSS method, and the utilization of null beamforming in ICA is ef-
fective for improving both the convergence speed and SNR, even
under reverberant conditions.
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Figure 1: Configuration of a microphone array and source signals.

2. CONVENTIONAL FDICA

2.1 Sound Mixing Model of Microphone Array
The coordinates of the microphones are designated ad dk (k = 1,
· · · , K), and the directions of arrival of multiple sound sources are
designated θl (l = 1, · · · , L) (see Fig. 1). K is the number of array
elements (microphones), and L is the number of sound sources.

In general, the observed signals in which multiple source sig-
nals are mixed linearly are given by the following equation in the
frequency domain:

X( f ) = A( f )S( f ), (1)

where X( f ) is the observed signal vector, S( f ) is the source signal
vector, and A( f ) is the mixing matrix; these are given as

X( f ) = [X1( f ), · · · ,XK( f )]T , (2)

S( f ) = [S1( f ), · · · ,SL( f )]T , (3)

A( f ) =







A11( f ) · · · A1L( f )
...

...
AK1( f ) · · · AKL( f )






. (4)

A( f ) is assumed to be complex-valued because we introduce a
model to deal with the arrival lags among each of the elements of
the microphone array and room reverberations.

2.2 FDICA-Based BSS [2]
In FDICA, first, the short-time analysis of observed signals is con-
ducted by frame-by-frame discrete Fourier transform (DFT). By
plotting the spectral values in a frequency bin of each microphone
input frame by frame, we consider them as a time series. Hereafter,
we designate the time series as X( f ,t) =[X1( f ,t), · · · ,XK( f ,t)]T.
Next, we perform signal separation using the complex-valued in-
verse of the mixing matrix, W( f ), so that the L time-series output
Y( f ,t) becomes mutually independent; this procedure can be given
as

Y( f ,t) = W( f )X( f ,t), (5)
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Figure 2: Proposed algorithm combining frequency-domain ICA
and beamforming.

where

Y( f ,t) = [Y1( f ,t), · · · ,YL( f ,t)]T , (6)

W( f ) =







W11( f ) · · · W1K( f )
...

...
WL1( f ) · · · WLK ( f )






. (7)

We optimize W( f ) using ICA algorithm based on the minimiza-
tion of Kullback-Leibler divergence as follows:

W i+1( f ) = α
[

I−
〈

Φ
(

Y( f ,t)
)

Y( f ,t)H
〉

t

]

Wi( f )

+W i( f ), (8)

where 〈·〉t denotes the frame-averaging operator, i is used to express
the value of the i th step in the iterations, and α is the step-size
parameter. We use the nonlinear vector function Φ(·) [4] as

Φ(Y( f ,t) ≡
[

Φ(Y1( f ,t)), · · · ,Φ(YL( f ,t))
]T

, (9)

Φ(Yl( f ,t)) ≡ tanh(abs(Yl( f ,t))) · exp[ j·angle(Yl( f ,t))], (10)

where abs(Yl( f ,t)) is an absolute value of Yl( f ,t) and
angle(Yl( f ,t)) is an argument of Yl( f ,t).

3. PROPOSED ALGORITHM

3.1 Motivation and Strategy
The conventional ICA often suffers a serious problem which is due
to the poor convergence ability, especially when setting an invalid
separation matrix as the initial value in ICA. In order to resolve the
low convergence problem, we propose an algorithm including the
temporal alternation of learning between ICA and beamforming;
the separation matrix, W( f ), obtained in ICA is temporally replaced
by a null-beamforming-based matrix for a temporal initialization or
acceleration of the iterative optimization.

Even in the proposed algorithm, DOA information for each
source is demanded before building up the null beamformer. It was,
however, too difficult to address the DOA estimation problem un-
der ordinary BSS tasks where the number of sources, L, equals that
of sensors, K. For example, the conventional DOA estimator, e.g.,

eigenanalysis method cannot be applied to the K=L BSS case be-
cause of the required condition that K > L for the conventional DOA
estimator. In order to make the DOA estimation under K=L possi-
ble, we introduce a novel combination, the so-called “ICA-driven
null-finding-based DOA estimator,” in which the DOA estimation
follows one-time ICA iteration and can be done by using the sepa-
ration matrix obtained from ICA. This DOA estimation method is
mainly based on our preliminary finding that the directional null is
steered to the DOA of the suppressed source in ICA. Thus, we can
approximately estimate the DOAs only to find the null directions in
the directivity patterns produced by the separation matrix of ICA.

3.2 Algorithm
The proposed algorithm is conducted by the following steps with re-
spect to all frequency bins in parallel (see Fig. 2). Here we consider
the general case of K = L > 2, unlike the previous work (K = L = 2)
[6].
[Step 1: Initialization] Set the initial Wi( f ), i.e., W0( f ), to a con-
ventional delay-and-sum (DS) array, where the subscript i is set to
be 0.
[Step 2: 1-time ICA iteration] Optimize W i( f ) using the follow-
ing one-time ICA iteration:

W(ICA)
i+1 ( f ) = α

[

I−
〈

Φ
(

Y( f ,t)
)

Y( f ,t)H
〉

t

]

Wi( f )

+W i( f ), (11)

where the superscript “(ICA)” represents that the separation matrix
is updated by ICA.
[Step 3: DOA estimation] Estimate DOAs ϑ = {θ1, · · · θL} of
the sound sources by employing the directivity pattern of the array
system. The directivity pattern Fl( f ,θ ) with respect to the l th ICA
output is generally given by

[F1( f ,θ ),F2( f ,θ ), · · · ,FL( f ,θ )]T = W(ICA)( f )e( f ,θ ), (12)

where e( f ,θ ) is the steering vector which is defined by

e( f ,θ ) =
[

exp [ j2π( f fs/N)d1 sinθ/c] ,

· · · ,exp [ j2π( f fs/N)dK sinθ/c]
]T

, (13)

where c is velocity of sound, fs is a sampling frequency and N is a
DFT size.

In the simple case of K = L = 2, directional nulls in the direc-
tivity patterns appear in only two particular directions, and thus we
can heuristically categorize the null directions θl into two groups
“large” or “small” [6]; this corresponds not to a complicated clus-
tering but to a simple binary quantization. This procedure has the
advantage of the low computational cost, but cannot be available
in K = L > 2. To conquer the problem, we newly introduce an
extended DOA estimation algorithm based on a directional null
clustering technique, which can work even in the general case of
K = L > 2.

Under K = L > 2, at most L−1 directional nulls are produced
in the l th directivity pattern Fl( f ,θ ) at the f th frequency bin. Here
the set of DOAs of the directional nulls, Θ(l)( f ), is defined as

Θ(l)( f ) =
{

θ
∣

∣

[

Fl( f ,θ )−Fl( f ,θ−∆θ )
]

≤ 0;
[

Fl( f ,θ +∆θ )−Fl( f ,θ )
]

> 0
}

, (14)

where ∆θ is a positive small value, and {θ | A; B} refers to a set of
θ which satisfies the conditions A and B simultaneously.

Obviously Θ(l)( f ) can be considered as a set of good candi-
dates of DOAs. In order to identify the true DOAs of sources from
Θ(l)( f ), first, we classify Θ(l)( f ) with all f and l into L categories
by using a Lloyd clustering algorithm [8]. Next, we calculate the
centroids of these categories, and finally we identify the centroids as



the estimated DOAs. The detailed classification procedure is shown
below.
(a) Construct the full set of Θ(l)( f ) to be classified, as

Θ =
{

θ1,θ2, · · · ,θQ

}

=
L

∑
l=1

N/2

∑
f=1

Θ(l)( f ), (15)

where Q is the total number of detected directional nulls (up to Q =
(L−1) ·L ·N/2).
(b) Set initial L centroids ϑ (C) = {θ (C)

1 , · · · θ (C)
L } to the DOAs

estimated in the previous ICA iteration, i.e., ϑ (C) = ϑ̂i. In the first
iteration (i = 0), we set ϑ (C) to an arbitrary value.
(c) Set L−1 partitions θ (P)

p (p = 1, · · · ,L−1) as follows:

θ (P)
p = (θ (C)

p +θ (C)
p+1)/2, (16)

where −90 < θ (P)
1 < θ (P)

2 < · · · < θ (P)
L−1 < 90. Also, the termi-

nal partitions θ (P)
0 and θ (P)

L are fixed at −90 and 90, respectively,
throughout the algorithm.
(d) Given the partitions, calculate the L centroids θ (C)

l (l = 1, · · · ,
L) as

θ (C)
l =

1
Ql

{

∑
θ (P)

l−1≤θq<θ (P)
l

θq

}

, (17)

where Ql denotes the number of θq under θ (P)
l−1 ≤ θq < θ (P)

l .
(e) Go back to (c) for updating the new partitions by using the new
centroids, and repeat the loop in (c)∼(e) with an appropriate number
of iterations. The final centroids ϑ (C) are regarded as the resultant
estimated DOAs ϑ̂i+1 in the (i+1) th iteration, i.e., ϑ̂i+1 = ϑ (C).
[Step 4: Beamforming] Construct a beamforming-based separa-
tion matrix, W(BF)( f ), based on the null-beamforming technique
where the DOA information obtained in Step 3 is used. The matrix
W(BF)( f ) is given by

W(BF)( f ) =
[

e( f , θ̂1),e( f , θ̂2), · · · ,e( f , θ̂L)
]−1

. (18)

[Step 5: Diversity using cost function] The following strategy is
applied for selecting the most suitable separation matrix in each
frequency bin and at each iteration point, i.e., algorithm diversity
in both ICA iteration and frequency subband. As the cost func-
tion used in the diversity, we define an averaged coherence function
among L separated signals:

C(W( f )) =
1

LC2

L

∑
l=2

∑
l′<l

∣

∣

〈

Yl′ ( f ,t)Yl( f ,t)∗
〉

t

∣

∣

√

〈

|Yl′ ( f ,t)|2
〉

t

〈

|Yl( f ,t)|2
〉

t

, (19)

where Yl( f ,t) and Yl′ ( f ,t) are the distinct separated signals de-
fined by (5). We calculate the estimated coherence function once
for W( f ) = W(ICA)( f ) (i.e., C(W(ICA)( f ))), and once for W( f )
= W(BF)( f ) (i.e., C(W(BF)( f ))). Although the coherence function
cannot measure the accurate independence among sources, we use
this function to assess the source independence approximately be-
cause of the benefit of the small computational complexity.

If the expected separation performance of beamforming is bet-
ter than that of ICA, then C(W(ICA)( f )) > C(W(BF)( f )); otherwise,
C(W(ICA)( f )) ≤ C(W(BF)( f )). Accordingly, an inspection of the
conditions leads to the following diversity:

W i+1( f )

=

{

W(ICA)( f ),
(

C(W(ICA)( f )) ≤C(W(BF)( f ))
)

W(BF)( f ),
(

C(W(ICA)( f )) > C(W(BF)( f ))
)

.
(20)
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Figure 3: Layout of reverberant room used in experiment.

If the (i + 1) th iteration is the final iteration, go to step 6; other-
wise, go back to step 2 and repeat the iterative algorithm, inserting
Wi+1( f ) as given by (20) into Wi( f ) in (11) with an increment of i.
[Step 6: Ordering and scaling] Using the DOA information ob-
tained in step 3, we can detect and correct the source permutation
and the gain inconsistency [5]. From the directivity patterns in all
frequency bins, we approximate the interference reduction ratio by
the difference between the gain at the direction of the target and that
of the interferences. By comparing the degree of the estimated in-
terference reduction, we can resolve the permutation problem. The
gain inconsistency problem is resolved by normalizing the directiv-
ity patterns according to the gain in each source direction after the
classification.

4. EXPERIMENTS AND RESULTS

4.1 Experimental Setup
We carried out a speech separation experiment under the condition
of K = L = 3. The room impulse responses are measured in an or-
dinary room, which has the RT of 200 msec, as shown in Fig. 3.
A three-element array with interelement spacing of 4.3 cm is used.
Three loudspeakers are placed as the sound sources at three direc-
tions, −60◦, 0◦, and 70◦. Two sentences spoken by two male and
two female speakers are used as the original speech samples; these
speech data are limited within 3 sec, and the sampling frequency is
8 kHz. Using these sentences, we obtain 12 combinations with re-
spect to speakers and source directions. We set the DS-array-based
initial value W0( f ) which steers the look directions to −90◦, 20◦,
and 90◦. The frame length is 128 msec and the frame shift is 2 msec.
The step-size parameter α is 1.0× 10−6. In order to evaluate the
performance, we used the noise reduction rate (NRR) [5], which is
defined as the output signal-to-noise ratio (SNR) in dB minus input
SNR in dB.

4.2 DOA Estimation Results
Figure 4 shows the DOA estimation results (averaged DOAs for 12
combinations) for different number of loops in the Lloyd clustering
algorithm (see Sect. 3, Step 3 (e)). We compared three patterns, in
which the number of Lloyd loops is 1, 5, and 10 times. These results
reveal that the performances of the DOA estimation using 5 and 10
Lloyd loops are equivalent. From these results, the Lloyd clustering
converges at 5 times. In the next source-separation experiment, we
set the number of loops for the Lloyd clustering algorithm to be 5
times.

4.3 Source-Separation Result
Figure 5 shows the averaged NRRs for 12 combinations. Each curve
depicted in this figure represents the following methods.
Proposed Method : High-convergence algorithm proposed in this

paper (see Section 3).
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Figure 4: Results of DOAs estimated by the Lloyd clustering algo-
rithm for different number of loops in the proposed method.

Conventional ICA : The conventional ICA-based BSS method
(see Section 2.2). This method is also equivalent to the spe-
cific case that ICA-based matrix is always selected in step 5 of
the proposed algorithm, i.e., always W i+1( f ) = W(ICA)( f ) in
(20).

Null Beamformer : The conventional null beamformer with the
(ICA-driven) iteratively updated DOA estimator. This is also
equivalent to another specific case that the null-beamformer-
based matrix is always selected in step 5 of the proposed al-
gorithm, i.e., always Wi+1( f ) = W(BF)( f ) in (20).

These results indicate that the proposed method remarkably outper-
forms both the conventional ICA and null beamformer at every iter-
ation point. Thus, the proposed diversity algorithm can work very
well in the case of K = L = 3 as well as K = L = 2.

To investigate the proposed method’s function in detail, Fig-
ure 6 shows the example of alternation results between ICA and
null beamforming through iterative optimization by the proposed
algorithm. The following points are disclosed.
• Early in the iterations, null beamforming is mainly used for the

acceleration of learning. This is because W(BF)( f ) is a rough
approximation of the separation matrix.

• After the early part of the iterations, ICA is preferred because
the separation matrix can be updated more accurately in ICA.

• It is, however, very interesting that the separation matrix ob-
tained by ICA is sometimes replaced by the null-beamforming-
based matrix through all iteration points at particular frequency
bins where the independence between the sources is expected to
be low.
In summary, although null beamforming is not optimal for

source segregation under the reverberant condition, we can confirm
that the temporal utilization of null beamforming for algorithm di-
versity through ICA iterations is effective for improving both the
convergence speed and the separation ability.

5. CONCLUSION

In this paper, we described a fast- and high-convergence blind sep-
aration algorithm for multiple source signals where null beamform-
ing is temporally used for algorithm diversity through ICA itera-
tions. The simulation results of the signal separation experiments
reveal that the signal separation performance of the proposed algo-
rithm is superior to that of the conventional ICA-based BSS method,
and the utilization of null beamforming in ICA is effective for im-
proving the separation performance and convergence, even under
reverberant conditions.
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