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ABSTRACT

This paper investigates intra-adaptive wavelets for video cod-
ing with frame-adaptive motion-compensated lifted wavelet trans-
forms. With motion-compensated lifted wavelets, the temporal
wavelet decomposition operates along motion trajectories. How-
ever, valid trajectories for efficient multi-scale filtering have a finite
duration in time. This is due to well known effects like occlusions
or inaccurate motion estimation. These discontinuities may gen-
erate many non-zero wavelet coefficients when a transform with a
fixed dyadic structure is used. To investigate the advantage of an
adaptive transform, we introduce intra macroblocks in the frame-
adaptive lifting steps. Depending on the rate-distortion costs at a
given macroblock location, we choose the number of wavelet de-
composition levels locally. We discuss motion-compensated lifted
wavelets that are frame- and intra-adaptive. We evaluate the ef-
ficiency of intra-adaptive wavelets when frame-adaptive motion-
compensated wavelets are used. We observe that intra-adaptivity
is rate-distortion efficient for discontinuities that cannot be handled
by frame-adaptivity.

1. INTRODUCTION

Currently, motion-compensated lifted wavelet transforms [1] are
studied extensively as they combine excellent compression effi-
ciency with the possibility of an embedded representation. To im-
prove compression efficiency, adaptive lifting schemes are investi-
gated for motion-compensated temporal filtering (MCTF). In par-
ticular, frame-adaptive motion-compensated lifted wavelets [2] and
multi-hypothesis motion-compensated lifted wavelets [3] have been
proposed in the framework of a MCTF extension of H.263++ [4].
Further improvements have been accomplished with the MCTF ex-
tension of H.264/AVC [5].

In this work, we investigate intra-adaptive wavelets. We re-
view the theoretical background of non-linear approximations of
piecewise-smooth signals based on wavelet transforms. With this,
we motivate the temporal adaptivity for wavelet transforms that
improve the rate distortion efficiency. An analogy between mo-
tion compensated coding of video signals and coding of piecewise-
smooth signals is presented. For non-stationary signals, adaptive
decompositions are useful for efficient coding. Smooth signal parts
and discontinuities should not be treated in the same way. We refer
to well known rate distortion results for the class of 1D piecewise-
polynomial signals [6, 7]. Interval adaptive coding techniques
which permit separate encoding of smooth areas can outperform
wavelet based transform coding.

For coding video signals, the motion-compensated lifting
scheme can be extended by intra macroblocks. They allow sepa-
rate encoding of intervals with smooth motion trajectories. Recall
that frame-adaptive motion-compensated lifted wavelets [2] permit
a flexible encoding of motion trajectories as long as sufficient can-
didate reference frames are available. The number of efficient ref-
erence frames decreases not only due to encoding constraints but
also due to frequent scene changes. If frame-adaptive motion-
compensated wavelets are not able to provide the desired flexibil-
ity, intra macroblocks will be used to permit separate encoding of

intervals with smooth motion trajectories. We compare both intra-
adaptive and frame-adaptive motion-compensated wavelets to study
separate encoding of intervals with smooth motion trajectories.

The paper is structured as follows: Sec. 2 reviews non-linear ap-
proximations of piecewise-smooth signals based on wavelet trans-
forms. Sec. 3 summarizes frame-adaptive motion-compensated
lifted wavelets and discusses the intra-adaptive scheme. Experi-
mental results are presented in Sec. 4. Finally, Sec. 5 concludes our
investigation.

2. ADAPTING WAVELET EXPANSIONS:
APPROXIMATING NON-STATIONARY SIGNALS

The use of motion compensation (MC) within the wavelet temporal
representation has the purpose of performing filtering in the mo-
tion direction. This motion oriented filtering drastically reduces the
number of significant wavelet coefficients generated in the tempo-
ral transform. Indeed, multi-scale redundancy can be exploited not
only from those regions that remain unchanged in a period of time
but also those objects subject to a motion through time. As long
as the motion of the scene can be accurately estimated, the tempo-
ral signal encountered by the wavelet transform will be smooth or
even constant if no local temporal illumination changes are present
in the scene. When the motion cannot be estimated correctly, or
simply, when there is an occlusion or an appearing object, the sig-
nal seen by the wavelet transform presents a step in amplitude. This
step issues from the mismatch between the best signal sample can-
didate for prediction found by the MC and the signal sample being
predicted. As one can expect, the representation of a step function
needs a significant quantity of wavelet coefficients.

2.1 Piecewise-Smooth Signals: A Deterministic Model for Mo-
tion-Compensated Video Sequences

Often, signals are modeled by stationary jointly Gaussian stochastic
models. However, real signals can have a quite different behavior.
This is commonly the case for natural images and video sequences.
Indeed, these are more often associated to a deterministic signal
model that allows a better analysis of the R-D properties of different
methods used to code them. A deterministic model that fits the sig-
nal behavior in video sequences is the so called piecewise-smooth
signal model [6, 7].

The temporal behavior of all connected pixels by means of mo-
tion vectors may be seen as a piecewise-smooth signal. In this class
of signals, wavelets have shown to be quite successful because they
are specially suited for representing them. Thanks to their locality,
these capture well abrupt changes in the signal. Moreover, smooth
parts are efficiently approximated by the scaling functions of the
wavelet basis. Nevertheless, wavelet transforms do not exploit the
interrelation among coefficients from different subbands generated
by an edge (see Fig. 1). Even though wavelet transforms are well
suited for representing discontinuities, their R-D sub-optimality can
be demonstrated as discussed in the following.



2.2 Optimal R-D Coding of Signal Discontinuities and the use
of Wavelet Transforms
Wavelet based signal coding involves non-linear approximation [7]
by means of partial reconstruction and coefficients quantization.
The deterministic piecewise model serves to evaluate the R-D per-
formance of wavelet based coding for this class of signals composed
by the mixture of switching components and smooth parts.
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Figure 1: Left: Spreading of coefficients through the wavelet sub-
bands of a 1D piecewise-constant signal representation. Right:
There are no wavelet coefficients to code when using an oracle to
code the discontinuities, i.e., position and amplitude.

Fig. 1 illustrates the response of a wavelet transform to a step
function. If a wavelet with sufficient vanishing moments is used,
all the polynomial areas can be represented by means of the coef-
ficients of the low frequency bands (the scaling functions). In such
case, the only part of the signal that generates wavelet coefficients
are discontinuities. To accurately code the step using a wavelet
transform, non-zero coefficients amplitudes and positions need to
be coded. On the other hand, Fig. 1 shows a non-linear approach
widely discussed in approximation theory [6, 7, 8]. This intends a
more efficient representation of piecewise signals in general, assum-
ing the existence of an oracle that tells where the switching points
among smooth pieces are located. If this is the case, since very ef-
ficient approximations of the smooth intervals can be achieved, a
better R-D behavior than in the case where only wavelets are used
is possible. Indeed, it is more efficient to code separately disconti-
nuities location and smooth parts. See in Fig. 1, in order to locate
the edge and to set its size, it is just necessary to supply one position
plus one amplitude. Moreover, the use of an independent represen-
tation in each of the intervals will not generate additional informa-
tion to code, i.e. consider a Haar wavelet that is used in each one
of these (where boundary effects and scaling functions coefficients
are properly handled). Then, no non-zero coefficients will be gen-
erated. To the contrary, in the simple 1D wavelet case, the number
of locations and amplitudes to code is proportional to the number of
decomposition subbands.

In oracle based coding of piecewise-polynomial signals, the
asymptotic behavior of distortion (D) at high rates is described as a
function of rate (R) [6]:

DO (R) ∼ 2−B·R
, (1)

where B is a positive constant. In case of wavelet coding, the asymp-
totic behavior at high rates is worse:

DW (R) ∼
√

R ·2−A
√

R
, (2)

where A is a positive constant. Unlike in (1), distortion decreases
with exponent

√
R which indicates a slower decay with the rate.

Notice that even if the asymptotic R-D behavior is analyzed at high
rate, it is sufficient to motivate the use of adaptive coding [6, 7],
and to understand the coding efficiency of different approximation
approaches.

3. ADAPTIVE MOTION-COMPENSATED LIFTED
WAVELET TRANSFORMS FOR VIDEO CODING

The length of wavelet transforms (i.e. the number of wavelet de-
composition subbands) may be adapted to cover smooth areas while

avoiding wavelet kernels to cross edges. Our purpose is to find a R-
D adapted decomposition of the video signal. In the case of motion
compensated lifted wavelet transform for video coding, this adap-
tivity can be implemented by means of inserting the so called intra
macroblocks as an additional coding mode for the coding scheme.

Our analysis and results of Sec. 4 are based on the multi-hy-
pothesis, frame-adaptive motion compensated lifting scheme pro-
posed in [2, 3]. This scheme already introduces some temporal
adaptivity allowing a free selection of reference frames for MC
within a GOP. Moreover, it allows an adaptive selection of the most
suitable lifting step (e.g. Haar or 5/3) to achieve the minimum rate-
distortion costs. Due to the dyadic decomposition, a fixed number
of multi-scale subbands is forced. This limits the adaptation to tem-
poral discontinuities and to motion misalignments as discussed in
Sec. 2.

3.1 Frame-Adaptive Motion-Compensated Lifted Wavelets

Current research aims to combine the advantages of linear tempo-
ral transforms and efficient motion compensation. A promising
scheme for exploiting successfully temporal redundancy is based
on motion-compensated temporal wavelets implemented in the lift-
ing scheme. The lifting scheme allows the inclusion of non-
linear, non-invertible, operations into its ladder structure. Non-
reversible operations such as quantization or motion compensation
are possible without affecting the reversibility of encoding schemes.
Motion-compensated lifting steps are introduced in [1]. The predic-
tion/update steps are performed using the samples that motion vec-
tors connect. [2, 3] use for the update steps the negative versions of
the motion vectors used in the prediction steps.

The multi-hypothesis, frame-adaptive variation on the lifting
scheme [2, 3] provides the possibility to select the best reference
signal for a given lifting step. This allows an interesting improve-
ment in fine scale detail subbands. However, this does not allow to
adaptively choose in space and time the number of desired decom-
position subbands for an efficient R-D compression.
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Figure 2: Example of the first decomposition level of the Haar trans-
form with frame-adaptive motion-compensated lifting steps. The
frame s2k+2 is used to predict frame s2k+1. d̂i j denote the motion
vectors.

Frame-adaptive MC lifted wavelets are a flexible approach per-
mitting adaptive signal representations. They reduce occlusion ef-
fects, difficulties due to scene changes, and defects caused by inac-
curate motion compensation at fine scales. Fig. 2 shows how frame
adaptivity is implemented in the lifting scheme for the Haar wavelet
case. The fix structure of the lifting scheme is broken such that
any even frame in the GOP can be used to select the best predic-
tion/update signals.



3.2 Intra-Adaptive Scheme
The frame-adaptive scheme does not change the default number of
wavelet decomposition subbands nor considers alternative methods
for MC at a particular location. In order to tackle this problem, the
so called intra refresh may be introduced into MC lifted wavelet
schemes. For example, recent work is also published in [5].

In the framework of MC lifted wavelets, intra refresh corre-
sponds to the adaptive insertion of void lifting steps. These do not
perform further temporal filtering on the signal. They implement
the necessary breakpoints in the wavelet decomposition for an effi-
cient R-D signal approximation (as discussed in Sec. 2). This spe-
cial “lifting” mode is depicted in Fig. 3. With proper selection of
this lifting mode, an approximation to the desired temporal wavelet
decomposition with a local adaptation of the number of subbands is
obtained.
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Figure 3: Broken lifting steps, neither prediction nor update are
used. Both are inhibited on a macroblock level. Notice the change
on the scaling factors to control the noise in the quantization stage.

Due to the absence of prediction and update steps, the scaling
factors of the output signals have been modified. We adapt the out-
put signals hk to the fixed quantizer step size used for all subbands.
Regarding the low band lk, the scaling by

√
2 adapts the dynamic

range of the signal to fit that of the next scale level for further de-
composition.

Both frame- and intra-adaptivity are suitable to handle the dis-
continuities of motion-trajectories. If suitable reference frames are
available, frame-adaptivity will be the best choice to reduce the en-
ergy in the detail subbands. But if suitable reference pictures are
out of reach, the intra mode is required. Moreover, the final level of
the dyadic decomposition offers only one reference picture. In that
case, the intra mode is the sole alternative.

4. RESULTS

We evaluate the benefits of temporal adaptivity and compare the
improvements in R-D efficiency. Tests are performed with the QCIF
sequences CNN and Foreman at 30 fps. Further results are given in
the technical report [9].

4.1 Coding Scheme
The coding scheme used to test the intra-adaptive approach is a
MCTF extension of H.263++ [4, 2, 3]. The encoder chooses for
each macroblock the best type of lifting scheme in a rate-distortion
sense. This selection is carried out macroblock by macroblock min-
imizing the Lagrangian costs of the high band of the lifting scheme.
Haar-, 5/3-, and void-type structures are used as candidates to en-
code each macroblock. Due to the flexibility of the frame adap-
tive scheme, M = 1 or M = 2 reference frames may be used by the
algorithm to code each macroblock. Since the goal of this work
is the experimental verification of the referenced theoretical con-
cept, there are no further subdivisions of the macroblocks for mo-
tion compensation purposes. Motion vectors are obtained by block-
based rate-constrained motion estimation jointly optimized with the
lifting mode selection. The motion information is estimated at each
decomposition level depending on the results of the lower level by
using half-pel accurate motion compensation. All subband mac-
roblocks generated by the temporal wavelet transform are encoded
with the H.263 8x8 DCT codec. All intra-frame coded subbands
are quantized with the same quantizer step size. Huffman codes are
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Figure 4: R-D comparison with intra-adaptivity for the entire se-
quence. Top: CNN. Bottom: Foreman.

used for entropy coding and motion vectors are predicted from spa-
tial neighbors. GOPs of size 32 are used in our experiments (up to
five decomposition levels). Shorter wavelet transforms are provided
by the intra macroblocks.

4.2 Experiments

Shorter instances of the lifted wavelet scheme (shorter than the
maximum allowed GOP length of 32) contribute locally to the ar-
eas where motion trajectories are shorter than 32 frames. Hence,
the benefit is going to be of local nature when particular charac-
teristics of the sequence require it. Fig. 4 shows how the use of
this additional coding mode introduces a moderate overall gain in
R-D coding performance. Average improvements range from 0.2
to 0.5 dB for middle and low motion sequences with some scene
changes and fast local motion. When using exclusively one refer-
ence frame for the prediction/update steps (M = 1 in Fig. 4), the
intra-adaptive scheme provides slightly better global R-D improve-
ments when compared to those obtained with two reference frames
(M = 2).

Let us take a GOP where relevant changes appear in the image
sequence and the MC lifting scheme cannot efficiently represent
them. R-D gains can be as high as 1 dB: See the top chart in Fig. 5.
In the same way as for the global R-D measure, when only one ref-
erence frame is used, intra-adaptive R-D improvement is slightly
higher for M = 1 when compared to M = 2. The use of intra MBs
appears coherent with the temporal scene changes or very fast mov-
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Figure 5: R-D comparison with intra-adaptivity for a particular
GOP. Top: 8th GOP of CNN. Bottom: 6th GOP of Foreman.

ing sequence periods.
Fig. 6 shows the average frequency of intra MBs at each decom-

position level. The index below the column indicates the decompo-
sition level in concordance to the scale of its associated wavelet
in the case that non-adaptive lifting steps are used. For dyadic
wavelets, the basis function scale evolves depending on the level
j as 2− j for j ∈ {1,2,3,4,5}. Lifting steps are split when mid-
dle or short length wavelet transforms are efficient. Intra MBs are
more frequently allocated at low decomposition levels (1, 2 or 3).
At high decomposition levels, there is a higher probability that the
frame-adaptive scheme finds good reference frames.

5. CONCLUSIONS

This article discusses intra-adaptive motion-compensated temporal
transform coding of video signals. Although the major signal parti-
tion for coding is the GOP structure of K pictures, we do not con-
sider a fixed number of wavelet decomposition levels to obtain a
fixed number of decomposition subbands. Our approach is such
that GOPs of K pictures are adaptively broken in smaller units at
the macroblock level. With this, the number of wavelet subbands
in the temporal transform is adapted in space and time. Local sig-
nal breakpoints are coded independently by using intra macroblocks
and wavelet kernels are reserved for those signal areas where ef-
ficient coding is achievable with the MC lifting scheme. In this
paper, we refer to related theoretical work and discuss local spatio-
temporal adaptations of MCTF schemes for video coding. The ap-
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Figure 6: Average frequency of intra MBs depending on the decom-
position level for a maximum GOP length of 32. The statistics have
been collected for the sequences CNN, Foreman, and Table Tennis
which have been coded at various bit rates. Up to M = 2 reference
frames are utilized.

proach improves R-D performance as well as visual quality. Intra
macroblocks are chosen if they achieve the smallest rate-distortion
costs. Sudden scene changes trigger this mode and disrupt temporal
filtering.
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