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ABSTRACT

This paper deals with the application of Neural Networks (NN's)
to the problem of Traffic Sign Recognition (TSR). The NN chosen
to implement the TSR system is the Multilayer Perceptron (MLP).
Two ways to reduce the computational cost in order to facilitate
the real time implementation are proposed. The first one reduces
the number of MLP inputs by pre-processing the traffic sign image
(blob). Important information is kept during this operation and only
the redundancy contained in the blob is removed. The second one
looks for neural networks with reduced complexity by selecting a
suitable error criterion for training. Two error criteria are studied:
the Least Square error (LS) and the Kullback-Leibler error crite-
ria. The best results are obtained using the Kullback-Leibler error
criterion.

1. INTRODUCTION

Systems dedicated to Traffic Sign Recognition (TSR) usually have
two specific stages. The fist one is related to the detection of traffic
signs in a video sequence or image. The second one is related to the
recognition of these detected signs, which is paid special attention
in this work. The performance of these stages highly depends on
lighting conditions of the scene and the state of the road sign due
to deterioration or vandalism. Another problem to surpass is the
rotation, translation or inclination of the sign. Its perfect position is
perpendicular to the trajectory of the vehicle, however many times
it is not like that. Problems related to the traffic sign size are of
special interest too. Although traffic sign sizes are normalized, we
can find signs of different ones. So, the recognition of a traffic sign
in this environment is not easy.

The TSR problem has been studied many times in the literature.
The works [1, 2, 3] solve this problem using the correlation between
the traffic sign and the elements of a data base. This technique in-
volves great computational cost. In other works [4], Matching Pur-
suit (MP) is used in two stages: training and testing. The training
process finds a set of best MP filters for each road sign. The test-
ing process projects the input unknown road sign to different MP
filters to find the best match. This method also implies high compu-
tational cost, specially when the number of elements grows up. In
a recent work [5], a Neural Network (NN) following the Adaptive
Resonance Theory is used as classification technique. This work
applies this technique to the whole image, where many traffic signs
can exist. This involves that the NN complexity must be very high
in order to recognize all the signs contained in the image.

On the other hand, many works are applied in a single-frame
way. For example, in [6] a Kalman filter is used to track a sign over
the frames until it is sufficiently large to be recognized as a specific
standard sign. A recent work [7] presents an automatic road sign
detection and recognition system based on a computational model
of human visual recognition. This work gives good results because
of the tracking system, although they consider road signs are al-
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Figure 1: Blocks of the TSR System

ways composed of a colour rim with a black/white interior. Its main
drawback is the high computational cost needed to implement it.

The objective of this work is to present two different ways to re-
duce the computational cost. The first one applies a pre-processing
of the traffic signs detected to reduce the number of inputs of the
Multilayer Perceptrons (MLP) used as classifiers. The second one
looks for a good error criterion which provides good performance
with small networks.

2. DESCRIPTION OF THE TRAFFIC SIGN
RECOGNITION SYSTEM

The TSR system used is presented here. The traffic signs obtained
with it and considered for the experiments are described, too.

The blocks the TSR system is composed of are shown in Figure
1. The Video Camera takes a video sequence. The Image Extraction
block is the responsible for creating images. The Sign Detection and
Extraction Stage extracts all the traffic signs contained in each im-
age and generates the small images called blobs, one per sign. Fig-
ure 1 also shows an example of the way this block works. The Form
Recognition Stage is the responsible for discerning among the dif-
ferent forms: circular, square, triangular and others. Once the blob
form is classified, the Recognition Stage has the responsibility to
recognize which is the exact type of signal. This stage is divided in
two parts: Traffic Sign Pre-processing Stage and Recognition Core.
This paper propose a feasible implementation of these two blocks,
that provide both low complexity and high correct recognition prob-
ability.

2.1 Traffic Sign Pre-processing Stage

Each blob presented at the input of the recognition stage has the
information of the red (R), green (G) and blue (B) colours. The
blob dimension is 30x30 pixels for each component (R, G and B).
So, the total size of each blow is 2700 pixels. Due to the dimensions
of the blob, the purpose of this stage is to reduce the redundancy
of information given to the recognition core in order to reduce its



computational cost.

Consider B is the matrix that contains the three colour compo-
nents of the blob. Also, consider B’ results from representing B in
a grey scale. This change from colour to grey scale is calculated
with (1). The values of b; ; and b j are the elements of the i-th row

and j-th column of the matrix B and B’, respectively, where both
indexes (i and j) varies from 1 to 30.

b; j = 0.49b; ; +0.29b; 30, +0.22b; 60, (1)

The averages normalized to the maximum pixel value (28) of
R (MR), G (MG) and B (MB) are calculated with (2), (3) and (4),
respectively.
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The normalized vertical (vh) and horizontal (hh) histograms
are calculated with (5) and (6), respectively.
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T is the adaptive threshold calculated with (7) for each blob. vh;
is the i-th value of vh and corresponds to the percentage of values
of the i-th row that are greater than the threshold T. hh; is the j-th
value of hh and corresponds to the percentage of values of the j-th
column that are greater than the threshold 7.

“ 5w % 2,0 ™

This pre-processing provides an observation vector x of 63 ele-
ments. It is composed of: vh (30 elements), hh (30 elements), MR,
MG and MB.

2.2 Traffic Sign Data Base Description

For the experiments presented in this paper, eight different types
of circular traffic signs were considered. These signs belong to the
international traffic code. Figure 2 (Normal Traffic Signs) shows
the different classes of traffic signs considered in this work. These
signs have been collected with the TSR system presented above. So,
they present distortions due to the problems described in section 1
(deterioration, vandalism, lighting variation, etc.). Some examples
are shown in Figure 2 (Traffic Signs with problems). The problems
caused by vandalism are shown in the examples of classes S; and
S3. The problems related to the blob extraction in the Sign De-
tection and Extraction Stage (not a correct fit in the square image)
are shown in the examples of classes S, S3 and S7. Examples of
signs with problems of rotation, translation or inclination are those
of classes S3, S4, S5, §7 and Sg. Finally, the differences of brightness
are observed in both parts of Fig. 2.

The data base has been divided into three sets: train, validation
and test. The first one is used to train the MLP. The second one is
used as validation set during the MLP training to improve general-
ization [8]. And the last one is used to evaluate the performance of
the trained MLP.

Normal Traffic Signs
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SLOE
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Figure 2: Eight different classes of international traffic signs (nor-
mal and with problems)
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Figure 3: Elements of the observation vector x (vh, hh, MR, MG
and MB) for an example blob of the class S4

The total number of traffic signs (blobs) considered for the ex-
periment is 235. So, after pre-processing each blob, a total number
of 235 observation vectors of 63 samples length each is obtained.
An example of the pre-processing applied to a given blob is shown
in Figure 3. The size of the train, validation and test sets are 79, 78
and 78 observation vectors (patterns), respectively.

2.3 Recognition Core

Neural networks have been considered to implement the Recogni-
tion Core. In particular, Multilayer Perceptrons are considered. The
Perceptron was developed by F. Rosenblatt [9] in the 1960s for op-
tical character recognition. The Perceptron has multiple inputs fully
connected to an output layer with multiple outputs. Each output y;
is the result of applying the linear combination of the inputs to a non
linear function called activation function. MLPs extend the Percep-
tron by cascading one or more extra layers of processing elements.
These extra layers are called hidden layers, since their elements are
not connected directly to the external world. Figure 4 shows an
MLP (I/N/O) with I inputs, one hidden layer with N neurons and
O outputs. For the results presented in this paper, the hidden layer
of the MLP is composed of neurons with log-sigmoidal activation
functions:

1
1+exp(—z)

L(z) =

The classifier performance can be specified with the probability
of correct classification (P..) and the probability of misclassifica-
tion (Py,.) for each hypothesis (class) or the total correct rate (P;)
and the rotal error rate (P,) for all the hypotheses (classes). The
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Figure 4: Structure of a MLP

P, is the probability of a pattern corresponding to a hypothesis is
correctly classified and the Py, is the probability that a pattern cor-
responding to a hypothesis is wrongly classified (Ppc=1-Pc:). The
P, and P, express the percentage of total classification successes
and errors (P,=1-P,) for all the hypothesis (classes), respectively.
In this paper we present results of the F,, and the overall number of
errors made by a given system.

The Back-Propagation Algorithm[8][10] with cross-validation
is used to train the MLP. This algorithm tries to find the minimum
of the error surface given by the error criterion. Two error criteria
are studied in this work: the Least Square (LS) and the Kullback-
Leibler (KL) error criteria.

The use of the Kullback-Leibler error criterion gives rise to
small networks with better or equal results than high networks
trained using the Least Square error criterion, as can be seen in
section 3. This fact makes possible the implementation of low com-
plexity systems.

2.3.1 Least Square Error Criterion

The LS error criterion applied to train a MLP is given by (9).
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where M is the number of training patterns. y(l) is the c-th
element of the output vector for input pattern x(1). d. (1) is the c-th
element of the desired output vector which is equal to 1 if the input
belongs to class ¢, and equal to O if the input does not belong to
class c. e.(l) is the difference between the c-th MLP output and its
desired output when the [-#h pattern is applied to the input.

It can be demonstrated that the LS error measure for MLPs is
equivalent to the expected value of the square of the distance be-
tween its output and the posterior probability of class given the in-
put [11]. This equivalence is derived for a two-class problem with
a single output MLP. The results can be generalized to large prob-
lems. So, for a two-class problem, the LS measure is given by (10).

1M )
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If the number of training patterns is large, the summation in
(10) converge to the expected value, so the error measure becomes

Eps=E{(y—d)*} (1)

Ers = E{(y ~ E{d]x}*} + E{(E{d}x} ~d)’}  (12)

For the desired output defined to be either O or 1, the conditional
expectation in (12) converges to the posterior probability, i.e.

E{d|x} = P{c[x} (13)

E; 5 now becomes

Ers = E{[y— P{c[x}]?} + E{[P{c]x} —d]’} (14

The firstitem in (14) is the only one which depends on the MLP
parameters. Therefore, minimizing Ey g results in a LS estimate of
the posterior probability of the class ¢ given the input x. The LS
estimate tends to overemphasize the large probabilities and deem-
phasize the smaller ones. Therefore, the LS method will estimate
the higher probabilities more accurately than the lower ones.

2.3.2  Kullback-Leibler Error Criterion

The use of feedforward neural nets produce reliable estimates of
the posterior probability. Therefore, a distance measure which is
sensitive to the difference between the true and estimated proba-
bility must be selected. One such criterion is the Kullback-Leibler
information measure [12]. A modified version of the KL measure
is proposed in [11]. They propose to minimize the following error
measure (15) when estimating the parameters of the MLP.
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where d_c(l) is the complement of the desired d, (/) (d_c(l) =
1—d (1)),

To compare the Kullback-Leibler error criterion with the LS
measure, we need to express Egy in terms of the distance between
the MLP output and the desired signal. After some algebraic ma-
nipulation [11], Ex7 can be rewrite as
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For values of |y.(I) —dc(I)| = |ec(I)| << 1 is approximately
given by
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Note that Ex; depends linearly on the difference between the
actual output of the MLP and the desired output. It is this property
of Ex; which makes it more suitable for the purpose of estimating
posterior probabilities than the regular LS error measure (Erg). As
shown in (9), Ers depends solely on the square of the error. Conse-
quently, it overemphasizes the larger errors which makes it inappro-
priate for estimating the small posterior probabilities, as discussed
earlier.

3. RESULTS

After traffic sign pre-processing stage a total number of 235 ob-
servation vectors is obtained, as indicated in 2.2. Each one is 63
samples length instead of 2700 (3x30x30) corresponding to size of
the whole blob. It implies a reduction of 2637 inputs to the MLP,
which reduces its computational cost.

The results obtained after training different MLPs of sizes
63/N/8 (63 inputs, N hidden neurons, and 8 outputs) with the
LS and Kullback-Leibler error criteria are shown in tables 1 and
2. As can be observed, the Kullback-Leibler error criterion pro-
vides better results than the LS one from two points of view. The
first one is related to the MLP size necessary to obtain a certain
number of errors. For the LS error criterion to achieve a mini-
mum of 6 classification errors, a minimum of Ny g = 33 hidden neu-
rons is necessary, whereas for the Kullback-Leibler one to achieve
the same number of errors, only Ngy = 15 hidden neurons are



Table 1: Performance evaluation of different MLPs (63/N/8)
trained with the LS error criterion

Hidden Neurons

(N) Errors P,

5 28 0.3590

7 22 0.2821
10 12 0.1538
15 12 0.1538
22 8 0.1026
33 6 0.0769
50 6 0.0769

Table 2: Performance evaluation of different MLPs (63/N/8)
trained with the Kullback-Leibler error criterion

H ldder(l AIXeurons Errors P,

5 9 0.1154

7 8 0.1026
10 8 0.1026
15 6 0.0769
22 6 0.0769
33 5 0.0641
50 4 0.0513

needed. So the computational cost reduction obtained is about 55%
(INgn — Nps|/Npsx100). The second point of view is related to
the minimum P, achieved. For the Kullback-Leibler error criterion,
the minimum P, obtained is 0,0513 with a 63/50/8 MLP. On the
contrary, the system trained with the LS error criterion achieves a
minimum P, = 0,0769, which is greater than the obtained with the
Kullback-Leibler one. The maximum MLP size (63/50/8) took as
limit for the experiments is due to the theorem explained in [8][10],
which relates the MLP size (MLP intelligence) needed to obtain a
certain P, and the number of observation vectors available.

It is important to note that the training parameters of the back-
propagation algorithm (learning rate, momentum and its updating
rates) are the same for both methods. This is the reason why they
are not mentioned and explained along the paper.

4. CONCLUSIONS

A Traffic Sign Recognition system is presented in this paper which
combines pre-processing and neural networks in the recognition
core. Pre-processing allows to maintain the majority of the infor-
mation of the input image, while reducing the dimension of the in-
put vector that is applied to the neural network. This fact reduces
the number of neural network weights and makes learning easier.
The considered neural networks are Multilayer Perceptrons, trained
to minimize two different error criteria. The first one is the well
known Least Square error criterion. The second one is a modified
Kullback-Leibler error measure.

Results obtained in this work show the robustness of the recog-
nition stage against problems like lighting conditions, rotation, etc.
These results provide low P, for the best MLPs trained with the LS
(0,0769) and Kullback-Leibler (0,0513) error criterions. So, an im-
provement of 0,0256 (33,2%) is obtained with the Kullback-Leibler
one. Training with the Kullback-Leibler error criterion works better
than with the LS one, due to the linear dependency of the Kullback-
Leibler error criterion with the difference between the actual and
the desired output. It permits to give the same importance to the
estimations of the low and large posterior probabilities.

A reduction in the computational cost is achieved for the same
error rate. The reduction got is about 55%, i.e., training a MLP with
the Kullback-Leibler error criterion can reduce its processing time
to the half of the corresponding to a MLP trained with the LS one.
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