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ABSTRACT 
In this paper, we propose a best basis selection method to 
choose a set of packets from a wavelet packet tree. Our goal 
is to obtain packets that show changes in both energy and 
frequency. The criterion adapted to choose the best basis is 
the Kullback-Leibler Distance (KLD). When there is no 
event to be detected, the estimated KLD follows roughly an 
exponential distribution depending on only one parameter: 
the length of the windows partitioning the signal. When 
events are detected in a packet, the distribution of the 
estimated KLD deviates from the exponential distribution. 
The statistics Kolmogorov-Smirnov are used to measure the 
separation between experimental and theoretical cumulative 
distributions in order to highlight the presence of ruptures, 
then to select the most relevant packets.   

1. INTRODUCTION 

There is a need to develop methods of detection and 
segmentation in real signals like Uterine EMG that is one of 
our application fields. Real signals are highly contaminated 
by noise resulting in a low signal to noise ratio (SNR). 
Therefore the extraction of relevant activities from real 
signals tends to be a complex task. Uterine EMG recordings 
are usually composed of activities with different frequency 
bands. When signals are decomposed using Wavelet 
Packets Transform (WPT), our problem is to choose from 
the WPT the packets that highlight the presence of ruptures. 
Then the detection algorithm on the selected packets will be 
applied.  

Wei and colleagues presented a study on active detection 
using a combination of modal analysis and WPT [11]. Peng 
and colleagues used WPT and an effective method for 
intrinsic mode function (IMF) selection in the rolling 
bearing fault detection [6].  
The power of WPT is that a best basis can be chosen for a 
specific task, if it can be properly identified from the set of 
possible candidates. The choice of the basis depends on 
criteria applied by analysis goals, such as compression, 
filtering[2], feature extraction and classification [10], etc. 
Ravier and Amblard presented a detector of transient 
acoustic signals combining the local wavelet analysis and 
higher-order statistical properties of the signals [8]. Leman 
and Marque proposed a more specific criterion to denoise 
the EHG signal [5].  Hitti and Lucas proposed a best basis 
selection method to detect abrupt changes in noisy multi-

component signals [4]. They used energy criterion to allow 
separation of the different frequency components of the 
signal from a wavelet-packet library tree. 

In our work, we use the wavelet decomposition WPT 
associated with a criterion of detection capability. If events 
and background activities mixed in the same recording 
present different probability densities, the Kullback Leibler 
distance KLD can be used as a distance between these 
densities. Therefore, KLD can be considered as an index of 
efficiency of each Wavelet Packet WP in detecting changes, 
hence events included in the recordings. For this reason, we 
use it as a criterion for choosing the most efficient or best 
basis for our application, i.e. the detection of different 
events that show both energy and frequency changes. KLD 
will be different according to whether there are one or more 
events in the packet. The idea is to approach the KLD 
statistics by a theoretical distribution where there is no 
event in a given wavelet packet WP. Hence a WP will be 
selected in the WP tree only if KLD significantly differs 
from that theoretical distribution. In addition, we apply the 
KLD directly on the wavelet packets’ coefficients, rather 
than on the reconstructed signals. 

2. METHODS 

2.1 Wavelet Packet Transform (WPT) 
WPT is an extension of Discrete Wavelet Transform and 
can be obtained by a generalization of the fast pyramidal 
algorithm. Each detail coefficient vector is decomposed 
into two parts using the same approach as in approximation 
vector splitting. The complete binary tree is produced as 
shown in figure 1. We start with h(n) and g(n), the two 
impulsive responses of low-pass and high-pass analysis 
filters, corresponding to the scaling function and the 
wavelet function, respectively. The sequence of functions is 
defined by: 
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)(x)(1 xW ψ=  is the wavelet function. In other words, the 

three indexed family of analyzing functions can be reached 
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2.3.1   Kullback-Leibler Distance 

Estimation of the Kullback-Leibler Distance is a crucial 
part of deriving a statistical model selection procedure, and 
is based on the likelihood principle [8]. The KLD is 
considered as a measure of goodness of fit of a statistical 
model. Between two probability densities and of a 
random variable X, the KLD is defined by [2]:  
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 Figure 1: Wavelet Packet Decomposition Tree. 
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θθθ     (b) k can be interpreted as a time-localization parameter and j 
as a scale parameter. W analyzes the fluctuations of the 
signal roughly around the position 2 , at the scale j2 , and 
at various frequencies for the different admissible values of 
the last parameter n [1]. The wavelet packets’ coefficients 
at each node (j, n) are written as: 

knj ,,

kj.
 

Given the GGD, the PDF of packet coefficients in each sub-
band can be completely defined by substituting (a) in (b). 
After some manipulations we obtain the following 
expression for the KLD between two PDFs of Gaussian 
models [2]:  
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2.2 Best basis selection 
WPT allows a best adapted analysis of a signal. The idea is 
to select a suitable orthogonal subset basis from the general 
wavelet packets according to the objectives of the specific 
analysis. For a J scale decomposition, the resulting binary 
tree yields  packets offering a complete description 
of the space of the original signal. The set of subspaces in 
the binary tree is a redundant tree. To determine the best 
basis, a cost function must be chosen to represent the goal 
of the application. The commonly used criterion for 
choosing the most efficient or best basis for a given signal 
is the minimum entropy criterion [2]. 
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In our case, we assume that the original signal follows a 
Gaussian distribution. Consequently, the packet coefficients 
follow the same distribution as the WPT is a linear 
transformation. So, we fixed the parameter 2=β . 
If L is the length of the sequence x, an estimation of the 
parameter α  is given as: 
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of the existence (or not) of events in the signal, then to 
allow classification of these events. A method to highlight 
the ruptures, hence to detect the presence of different 
events, is the use of the KLD. In our work, the KLD is 
directly applied on a temporal partition of the packet 
coefficients, and not on the reconstructed signals. 

 

The estimated KLD between two PDFs from the Gaussian 
families with 2=β  and the estimated parameter 
α becomes: 
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2.3 Principles of the choice of the best basis  
As previously mentioned, our goal is to find a set of nodes 
from the wavelet packet tree that allow detectability and 
classification of different events in the signal. To decide if a 
wavelet packet (or a node) contains more than one event, 
we make use of KLD as a criterion of presence of ruptures. 
Statistical properties of KLD estimated are related to the 
statistical characteristics of the WP coefficients. If we 
hypothesize that signal amplitude follows a Gaussian 
distribution, then a good PDF approximation for the 
marginal density of wavelet packet coefficients at a 
particular sub-band transform may be obtained by 
adaptively varying the two parameters of the generalized 
Gaussian density (GGD) [2], which is defined as: 

The KLD is not symmetric. To overcome this problem we 

use:  2112
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any pair of windows {l, m}, standard deviation is estimated 

as and , respectively. Therefore, the estimated 
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Figure 2: Histogram of 

^

K associated with the exponential 
distribution having the same expectation. 
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2.4.1 Expectation of KLD K  
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distribution. If X is a random variable following a chi-
square law with N degrees of freedom, then the expectation 
of log X is given by this equation: 
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2.4.2 Histograms of 
^

K and first order approximation of the 
distribution 

The idea here is to approach the histogram of estimated 

values of 
^

K with a known distribution under the hypothesis 

ααα == ml  . The empirical distribution of ml,∀
^

K is a 
function of only one parameter N, the degree of freedom, so 

that the theoretical distribution estimated by 
^

K  histogram 
has to depend on one parameter. Taking into account the 
shape of the histogram of figure 2, we chose as a first 
approximation the exponential distribution, which is a 
special case of the gamma distribution, depending only on 
one parameter λ . Its probability density function is defined 
as: 
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Figure 2 shows an example of a histogram of . Note that 
the variance remains to be evaluated.  The histogram shows 
that the selected approximation is valid only at order 1. 

2.5 Wavelet Packets characterization 
The goal of this study is to retain only the wavelet packets 
that contain at least one event. The characterization of a 
wavelet packet is that, if a wavelet packet contains at least 

one event, the distribution of 
^

K doesn’t follow the 
exponential distribution. From the binary tree of wavelet 
packets, we put a value “0” or “1” at each node, according 
to the result of the comparison between the experimental 

^

K distribution and the corresponding exponential 
distribution (Fig 3a). Comparison is done by use of the 
Kolmogorov-Smirnov (K-S) test [7].  The K-S statistic 

 is the maximum difference between the theoretical 
cumulative PDF and the experimental distribution. For this 
issue we define the two hypotheses as: 

maxD

:0H  KLD follows exponential distribution. 
:1H  KLD does not follow the exponential distribution. 

2.6 Best basis construction algorithm 
The previous step identified all nodes where significant 
activities were detected. As the tree is highly redundant, the 
next steps have to select the nodes that will be finally kept 
for further signal analysis. The current implementation of 
the selection algorithm strictly follows the first proposed by 
Hitti and Lucas [4]. The steps of the algorithm selecting the 
best basis are the following:  

a. The number 1 or 0 is associated with each packet 
according to the K-S result, with 1 meaning that 
there is at least one rupture (Fig.3a). 

b. The value at each node father is compared with the 
sum of values of its sons.  If the sum is larger than 
that of the father, the sum is then accorded to the 
father (Fig.3b). 

c. Only the nodes at “1” having a father at “2” or 
higher than “2” are selected in order to reduce the 
redundancy (Fig.3c).  



Hitti’s algorithm guarantees a complete basis representing 
the entire original signal (all the packets at 1 in Fig. 3c), i.e. 
the original signal can be reconstructed from the selected 

 

 

 

Figure 4: Detection algorithm is applied on 5 wavelet packets. 
Vertical lines show the segment detected by our algorithm. 

 

Figure 3: Steps for selection of the best basis. 

basis. Now, our goal is to select from this basis only the 
packets that are significant for event detection. According 
to this idea, we select only the packets at “1” in the first and 
third trees simultaneously. The final selected packets are 
those framed on Fig. 3c. 

Figure 5: The best basis obtained in the third step of the 
construction of best basis (fig 3.c) is plotted. 100 test 
simulated signals are used in this simulation.   

3. RESULTS 

The algorithm of construction of best basis is applied on the 
wavelet packets obtained after decomposition of simulated 
signals. The simulated signals are composed of four 
segments of different frequency bands defined with respect 
to half the sample frequency: 

.  2/eF ( ]8.0;61.0[],6.0;41.0[],4.0;21.0[],2.0;01.0[
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