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ABSTRACT

This paper presents a novel local motion estimation algorithm for
omnidirectional images. The algorithm captures correlation be-
tween two spherical images of a scene, taken from arbitrary view-
points, with the objective to reduce the encoding rate of these im-
ages. It first performs a multiresolution decomposition of the spher-
ical images, in order to improve the consistency of the motion es-
timation, with a limited computational complexity. Then, it de-
termines pairs of similar solid angles and matches blocks of the
two omnidirectional images, directly in the spherical domain. This
approach allows a simple motion estimation implementation, that
avoids potential discrepancies induced while unfolding omnidirec-
tional images to implement a classical motion estimation on images.
The proposed algorithm is shown to provide a quite efficient image
prediction, and the prediction error is almost exclusively composed
of high frequency noise.

1. INTRODUCTION

Efficient representation and coding of 3-D scenes has recently
gained a lot of attention from the research community, fostered
by the development of emerging applications in exploration, movie
production, virtual reality or even surveillance. While most of the
work in this area is focusing on image-based rendering methods,
this paper proposes to address the representation of the plenoptic
function directly in the spherical domain, under the assumption of
perfect vision sensors. This choice presents the main advantage of
avoiding the potential discrepancies due to Euclidean approxima-
tions in image-based rendering.

In the proposed framework, several omnidirectional cameras
capture a static 3-D scene, from arbitrary viewpoints. Each of these
cameras outputs an omnidirectional image that can be mapped on
a sphere, through inverse stereographic projection [1, 2]. However,
the output images from multiple cameras are obviously correlated,
and a rate efficient representation of the overall 3-D scene first re-
quires the removal of redundancy between the different views. This
paper proposes a local motion estimation algorithm, that captures
the correlation between omnidirectional images taken from arbi-
trary viewpoints. The choice of local motion estimation, as opposed
to global rotation estimation used in computer vision [3,4], is driven
by the perspective of an efficient coding of the plenoptic function.
The proposed algorithm is built on a multiresolution representation
of spherical images, in order to provide a consistent motion field,
even with images captured at very different viewpoints. The mul-
tiresolution coarse-to-fine motion estimation method used for clas-
sical images [5] has been adapted to the spherical framework, in or-
der to report similarities between solid angles, instead of common
blocks of pixels. The multiresolution motion estimation is shown
to provide a very efficient prediction of spherical images, and the
residual error is kept small and concentrated in high frequencies.

The paper is organized as follows. Section 2 overviews the
framework used in this work, and the omnidirectional camera setup.
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Section 3 describes the multiresolution analysis for spherical im-
ages, that is used in the motion estimation algorithm. Section 4
presents the local motion estimation algorithm for omnidirectional
images, and Section 5 shows experimental results.

2. GEOMETRY OF OMNIDIRECTIONAL IMAGES

2.1 Omnidirectional Imaging System

The system for obtaining omnidirectional images, in our case, is a
typical parabolic catadioptric sensor. It is realized as a parabolic
mirror which is placed in front of a camera approximating an ortho-
graphically projecting lens as depicted on Figure 1. In such a case,
the ray of light incident with the focus of the parabola is reflected
to a ray of light parallel to the parabola’s axis. This construction is
equivalent to a purely rotating perspective camera.
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Figure 1: Omnidirectional system with parabolic mirror: the par-
abolic mirror is placed at parabolic focus F1, while the other focus
F2 is at infinity [1].

2.2 Mapping of the Omnidirectional Image on the Sphere

The entire information seen by the observer can be described with
the plenoptic function [6] which gives the intensity distribution of
the pencil of light rays incident to the observer. Obviously, the most
natural representation of this distribution is in the spherical coordi-
nate system. Working in the natural coordinates of the observer has
many advantages. It allows for directly estimating the position or
direction of objects in the sensor’s environment. Many Computer
Vision algorithms also take advantage of geometric invariance such
as, for example, the relative orientation of the sensor and objects in
the scene. Thus, our goal is to recover the spherical coordinates,
θ ∈ [0,π] and ϕ ∈ [0,2π), of incoming rays of light at the parabola
focus F1, which locates our ideal observer.

It was shown in [1] that there is an equivalence between any
central catadioptric projection and a composition of two conformal
mappings on the sphere. In order to see how an omnidirectional
image is mapped on the sphere, we first consider a cross-section



F

P

N

S

1

2

d

l 1

z

Figure 2: Cross-section of mapping the omnidirectional image on
the sphere [1]

of the paraboloid. This is shown on Figure 2 . All points on the
parabola are equidistant to the focus F1 and the directrix d. Let
l pass through F1 and be perpendicular to the parabolic axis. If a
circle has center F1 and radius equal to twice the focal length of the
paraboloid, then the circle and parabola intersect twice the line l and
the directrix is tangent to the circle. The North Pole N of the circle is
the point diametrically opposite to the intersection of the circle and
the directrix. Point P is projected on the circle from its center, which
gives Π1. This is equivalent to a projective representation, where
the projective space (set of rays) is represented as a circle here. One
easily sees that Π2 is the stereographic projection of the point Π1
to the line l from the North pole N, where Π1 is the intersection of
the ray F1P and the circle. We can thus conclude that the parabolic
projection of a point P yields point Π2 which is collinear with Π1
and N. Extending this reasoning to three dimensions, the projection
by a parabolic mirror is equivalent to projection on the sphere (Π1)
followed by stereographic projection (Π2). We can thus recover
the spherical coordinates of incoming light rays through a simple
inverse stereographic projection of the sensor images.

Similar mapping schemes can be derived for different system
constructions (with hyperbolic or elliptic mirror), by employing the
inverse stereographic projection from a point specified by the cho-
sen construction, as explained in [1].

3. DYADIC MULTIRESOLUTION ON S2

3.1 Sampling and Filtering

In this section, we introduce a dyadic multiresolution representation
of omnidirectional images. In the following, we will model these
signals by elements of the Hilbert space of square-integrable func-
tions on the two-dimensional sphere L2(S2,dµ), where dµ(θ ,ϕ) =
d cosθdϕ is the rotation invariant Lebesgue measure on the sphere.
These functions are characterized by their Fourier coefficients
f̂ (m,n), defined through spherical harmonics expansion :

f̂ (m,n) =
∫

S2
dµ(θ ,ϕ)Y ∗m,n(θ ,ϕ)F(θ ,ϕ),

where Y ∗m,n is the complex conjugate of the spherical harmonic of
order (m,n). Multiresolution is an efficient tool that allows to de-
compose a signal at progressive resolutions and perform coarse to
fine computations on the data. The two most successful embodi-
ments of this paradigm are the various wavelet decompositions [7]
and the Laplacian Pyramid (LP) [8]. In this section, we will adapt
the latter scheme to omnidirectional images.

Our omnidirectional images are mapped to spherical coordi-
nates according to Section 2.2 and re-sampled on an equi-angular
grid:

G j = {(θ jp,ϕ jq) ∈ S2 : θ jp = (2p+1)π
4Bj

,ϕ jq = qπ
Bj
}, (1)

p,q ∈N j ≡ {n ∈ N : n < 2B j} and for some range of bandwidth
B = {B j ∈ 2N, j ∈Z}. These grids allow us to perfectly sample any
band-limited function F ∈ L2(S2) of bandwidth B j, i.e., such that
f̂ (m,n) = 0 for all m > B j. Moreover, this class of sampling grids
is associated to a Fast Spherical Fourier Transform [9].

3.2 Spherical Laplacian Pyramid

The first step in our algorithm consists in low pass filtering the data,
an operation we perform in the Fourier domain for speeding up the
computations. We use an axisymmetric low-pass filter defined by
its Fourier coefficients :

ĥσ0(m) = e−σ 2
0 m2

. (2)

Suppose the original data F0 is bandlimited, i.e, f̂0(m,n) = 0,
∀m > B0, and sampled on G0. The bandwidth parameter σ0 is cho-
sen so that the filter is numerically close to a perfect half-band filter
Ĥσ0(m) = 0, ∀m > B0/2. The low pass filtered data is then down-
sampled on the nested sub-grid G1, which gives the low-pass chan-
nel of our pyramid F1. The high-pass channel of the pyramid is
computed as usual, that is by first upsampling F1 on the finer grid
G0, low-pass filtering it with Hσ0 and taking the difference with F0.
Coarser resolutions are computed by iterating this algorithm on the
low-pass channel Fl and scaling the filter bandwidth accordingly,
i.e., σl = 2lσ0.

It should be noted that we used the LP for ease of imple-
mentation, but any other multiresolution representation could be
used. For example one could compute successive low resolution
image approximations by hard thresholding in a spherical wavelet
frame [10].

4. MULTIRESOLUTION MOTION ESTIMATION
ALGORITHM

Due to the distortion introduced in the unwrapped images, we
choose to implement the local motion estimation algorithm directly
in the spherical domain. The algorithm is based on a L-level mul-
tiresolution approach, that pairs solid angles from two spherical im-
ages (see Figure 3). Assume that the motion estimation aims at
computing a prediction G̃0 of the spherical image G0 from F0, that
is an image of the same scene, but captured from a different (arbi-
trary) viewpoint. Both spherical images are first filtered and down-
sampled, to generate a multiresolution representation of the scene,
as described before. The multiresolution approach clearly limits the
complexity of the motion estimation, and improves the consistency
of the motion field.

The local motion estimation performs as follows. The low-
est resolution spherical image GL−1 is divided into uniform solid
angles, of size Mδ L−1

θ × Nδ L−1
ϕ . The predicted blocks gi

L−1 in
GL−1 are then paired with the best matching blocks with the same
size in the reference image FL−1, within a search window of
Sδ L−1

θ × Sδ L−1
ϕ , around the location of the gi

L−1. A full search for

each block gi
L−1 determines the best predictors in a MSE sense,

f i
L−1, and the corresponding motion vectors. Note that, even if the

blocks gi
L−1 are all distinct, the blocks f i

L−1 may be overlapping.
The implemented block-matching algorithm also takes into account
the periodicity in the azimuthal direction.

The motion estimation is then iteratively refined at successive
resolution levels. The blocks at resolution l, bi

l , are divided into

four sub-blocks of size Ml−1δ l−1
θ ×Nl−1δ l−1

ϕ at the next resolution

level l−1, with 2δ l−1
θ = δ l

θ and 2δ l−1
ϕ = δ l

ϕ , due to the change in
the resolution level. The motion vectors from the lower resolution
level l serve as initial estimations of the motion vectors of the four
sub-blocks corresponding to the block bi

l . These estimations are
then refined based on the spherical images at resolution l−1, with
a full search in a window of size Sl−1δ l−1

θ × Sl−1δ l−1
ϕ around the

location specified by the motion vector from the lower resolution l,



Motion 
E stimation

L ow-pass filtering

Downsampling

level 0

Downsampling

L ow-pass filtering

Motion 
E stimation

Motion 
E stimation

level 1

level 2

L ow-pass filtering

Downsampling

Downsampling

L ow-pass filtering

MOTION VECTORS

F1

F0

F2

G1

G0

G2

MV2

MV1

H
^

σ0

H
^

σ1

H
^

σ0

H
^

σ1

Figure 3: Algorithm for local motion estimation of spherical im-
ages.

that has been up-sampled accordingly. The same process is applied
iteratively up to the finest resolution, and eventually outputs the field
of motion vectors. These motion vectors, along with the spherical
image f0, are used to form the prediction G̃0 of G0. The prediction
error is finally denoted E0 = G0− G̃0.

Algorithm 1 Multiresolution local motion estimation

l = L−1. MV i
L = [0,0],∀i, δ 0

θ = π
2B0

, δ 0
ϕ = 2π

2B0
, B0=full resolu-

tion
repeat

δ l
θ = 2lδ 0

θ . δ l
ϕ = 2lδ 0

ϕ ;

Divide Gl into I uniform blocks of size Mlδ l
θ ×Nlδ l

ϕ ;
i = 0;
repeat

(pi,qi)← position of gi
l ;

MV i
l ← up-sample MV i

l+1;
Ω←{(p,q)} such that

p ∈ [pi +MV i
l (1)− Sl δ l

θ
2 +1, pi +MV i

l (1)+ Sl δ l
θ

2 ] and

q ∈ [qi +MV i
l (2)− Sl δ l

ϕ
2 +1,qi +MV i

l (2)+
Sl δ l

ϕ
2 ]};

f i
l = argminΩMSE(gi

l , f i
l );

(si, ti)← position of f i
l ;

MV i
l ← [pi + si,qi + ti];

i← i+1;
until i > I
l← l−1;

until l < 0

5. EXPERIMENTAL RESULTS

This section presents the results of the local motion estimation al-
gorithm proposed above. Figure 4 shows one spherical image at the
second finest resolution level. Figures 5 and 6 show the original
spherical images of a static scene captured from two different view-
points. These images represent real spherical images, but they are
shown here as planar images in the (θ ,ϕ) plane, to provide visibil-
ity of all image features. Figure 7 represents the prediction G̃0 of
the second frame, with the local motion estimation algorithm, and
Figure 8 shows the corresponding prediction error E0, that has been

inverted to highlight the distribution of the residual error (a white
pixel corresponds to no error). The number of decomposition levels
is L = 5. The size of the blocks has been set to 4×4. The size of the
search window can vary from one resolution level to another. We
have chosen the window size for the lowest level to be 32×32 and
for all higher levels 8× 8. This way, the proposed algorithm can
capture big motions with low search complexity. It can be seen that
the motion estimation is quite efficient, since the predicted image
provides a very good approximation of G0. Also, the prediction er-
ror is almost exclusively located along high frequency components,
as expected from the high-pass characteristics of motion estimation.

Figure 4: Spherical image displayed on the sphere, level l=1

Figure 5: First original spherical image, F0.

Figure 6: Second original spherical image, G0.

Figure 9 represents the motion field that corresponds to the 3d

level of resolution. It can be seen that the motion field is mostly
consistent with the spherical image information. For example, mo-
tion vectors are very small in uniform and static areas like the table
(on the right-hand side of the predicted image). As expected from a
local motion estimation algorithm driven by MSE criteria, the mo-
tion vectors do not however necessarily follow semantic objects, but
rather pair areas with similar luminance information. This behavior
can be encountered for large motions where the change in lightning



Figure 7: Motion predicted image, G̃0.

Figure 8: Motion prediction error, E0.

conditions can induce discrepancies. On the other side, the obtained
motion field precisely depicts smaller movements.

Figure 9: Motion field at resolution level 3.

Figure 10 presents the evolution of the residual energy rela-
tive to the original image energy, as a function of the size of the
solid angle, and the size of the search window. It can be seen that
a larger search window at the coarsest resolution level generally
improves the quality of the motion estimation. Moreover, smaller
block size provides a better prediction, since details can be better
approximated. In a coding perspective however, a trade-off needs
to be found between the accuracy of the motion estimation, and the
coding cost, which generally increases with the number of motion
vectors.

6. CONCLUSIONS

In this paper a local motion estimation algorithm has been pre-
sented, that captures the correlation between omnidirectional im-
ages taken from arbitrary viewpoints. A multiresolution approach
has been proposed to improve the motion filed accuracy, while
limiting the computational complexity of the motion estimation
scheme. The local motion estimation algorithm has been shown
to be quite efficient since the residual error is kept very small and
mostly located around edges or high frequency components in the
predicted image. The proposed scheme can certainly represent an
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Figure 10: Relative energy of the prediction error, for different
block and search window sizes (L = 5).

important building block in a rate-distortion efficient encoder for
distributed omnidirectional images.
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