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ABSTRACT

Single channel blind dereverberation of speech acquired in an
acoustic environment is approached using parametric modelling and
estimation theory to obtain channel estimates; inverse filtering is
then applied to derevererate the speech. Models previously used
in such an approach deal with relatively simple scenarios such as
a gramophone horn modelled with 70 parameters; the weakness of
those models, however, is in their attempt to simultaneously model
the full channel spectrum by a single all-pole filter. Not only does
this lead to a large computational load, it is not parsimonious, nor is
it scalable such that the algorithm can be applied to higher dimen-
sional problems. A better approach uses subbands; in this paper, a
subband all-pole filter models the channel while the source is still
represented by a single-band block stationary AR process. An ex-
ample is given of blindly dereverberating a signal observed through
the aforementioned gramophone horn, demonstrating an equally ro-
bust, but more flexible and scalable model.

1. INTRODUCTION

Audio signals acquired in a confined acoustic environment usually
exhibit reverberation, due to the physical separation between the
source and microphone, which distorts the source signal; this causes
problems in two major classes of signal processing applications.
The first is in automatic speech recognition, and its variants, where
it is more difficult to identify reverberant natural speech than with
anechoic or closely coupled speech. This prevents “hands-free” in-
teraction without the undesirable constraint that the user must carry
a microphone near their mouth. The second class involves the desire
to improve speech quality and intelligibility from devices such as
mobile telephones, ‘hands-free’ tele-conferencing systems and next
generation digital hearing aids. In each case, the presence of rever-
beration should be reduced to adequate levels. In some engineered
scenarios, microphone arrays can be used to transform the problem
into a multi-channel blind source separation problem. However, it
is not always practical to use them due to physical constraints on
the size of the array; for example, mobile phones, hearing aids, or a
cluttered work environment.

Single channel blind dereverberation is the process of removing
reverberation from a single realisation of a reverberant signal mod-
elled as the convolution of an unknown source signal with an un-
known acoustic environment. This problem is particularly challeng-
ing since audio signals are temporally-correlated and have signal-
values that belong to an infinite support (the real line). The scenario
has previously been considered in [1], where it is assumed a nonsta-
tionary source can be modelled by a block stationary AR (BSAR)
process, and the room transfer function (RTF) by an all-pole filter.
Robust channel estimates are found using Bayesian parameter es-
timation theory, and an estimate of the original signal is obtained
by inverse filtering the observed reverberant signal. The results [1]
show that accurate channel estimates can be obtained for relatively
high model orders; examples include source model orders greater
than 60, and channel model orders greater than 70.

Although the all-pole filter can often parsimoniously approx-
imate rational transfer functions, it is usually applied such that it
simultaneously fits the entire frequency range, even though it may
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Figure 1: Parametric System Model.

well fit some regions in this frequency space better than others.
When acoustic impulse responses (AIRs) with reverberation times
of Tgo ~ 0.5 seconds are modelled by a linear time-invariant (LTI)
all-pole filter, large model orders are typically required, say at least
500 [2]. Thus, attempting to model the entire acoustic spectrum by a
single all-pole model often leads to a large computational load; this
can be unacceptable in computationally intensive algorithms such
as blind dereverberation. As a result, the algorithm in [1] suffers
from its lack of scalability; for example, to dereverberate a speech
signal measured in a real room, extremely high model-orders are
required to approximate the AIR, and the blind deconvolution algo-
rithm becomes numerically impractical.

Consequently, it is preferable to simply model a particular fre-
quency band of the filter’s spectrum by an all-pole filter, leading to
lower model orders. Subband linear prediction was first considered
in [3] and developed in [4,5]. Complete decoupling of the sub-
bands, as discussed in [6] where the subband all-pole filter is applied
to room acoustics, leads to discontinuities in the model’s spectrum
at the subband boundaries, introducing distortion into an equalised
channel. To circumvent this problem, continuity across subband
boundaries much be ensured by constraining the all-pole parame-
ters such that the end points at one subband boundary is matched to
the estimated spectrum in the adjacent subbands, as shown in [7].

In this paper, the subband modelling techniques introduced in
[6, 7] are incorporated into the blind dereverberation algorithm in-
troduced in [1], with the aim of extending that algorithm to deal
with more practical acoustic impulse responses.

Notation

Except where indicated, the set notation 4 = {1,...,G} C Z is
used; e.g. A7 ={1,...,N;}.

2. SYSTEM MODELS

In single channel blind deconvolution, a degraded observation, x =
{x(t),t € 7} € RT, is modelled as a nonlinear filtration of an un-
known source signal, s = {s(t), € 7} € RT; thus, x = f(s), where
f(-) denotes the unknown distortion operator. The task is to estimate
from the observations, x, either the distortion, f, or a scaled shifted
version of the source, §(t) = as(t — t), where a, T € R. The general
form of the parametric system model is shown in Figure 1.

2.1 Nonstationary Source Model

Speech is nonstationary and a particularly appropriate model for a
clean speech signal, s(¢), is a BSAR process [8-10]; s() is parti-
tioned into M contiguous disjoint blocks, with block i € .Z begin-
ning at sample #; and of length 7; = #;11 —#;. In this block, s(z) is



modelled as a stationary autoregressive (AR) model of order Q;:

Qi
s(0) == Y bila)s(t—q) +e(w). e(t)~ A (0.07) (1)
q=1

where e(7) is the excitation process whose variance is a positive real
number, 0; € R™, and where, in this equation, the time index takes
onvaluest € ;= {t;,...,t;11 — 1}, withi € A.

2.2 Time-Invariant Channel Model

In previous work [1], the LTT all-pole model is used for the channel:
P
x(t) ==} a(p)x(t—p)+s(t) @
p=1

where a = {a(p), p € &} is the set of P model parameters. The

filter’s transfer function is:
1
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However, a more flexible approach models the channel using L sub-
bands, rather than a single “full-band”. In each subband, the trans-
fer function, H(k), of s(¢) is modelled by an all-pole spectrum in
the region k € {k;, ..., k;1; — 1}, where [ denotes the subband in-
dex, K; = 2(k;.1 —k;) = T; is the number of frequency components
inband [ € £, and {k;, | € £} are the subband boundaries, where
ko2 0and k; £ T. Thus, the frequency bin closest to the half sam-
pling frequency is given by ks, = L%j The transfer function in a
2
particular subband is obtained from equation (3) using the mapping
for kT <2,
k—k k—k
— —
K 2k — ki)
such that the transfer function of the subband model is:
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where a; = {a;(p), p € Z;} and G; € R denote model parameters
in subband /, and the indicator function I/ (a) =1 if a € &/ and

zero otherwise. The term % is required in equation (5) to ensure
that the energy in the spectrum in conserved through the spectral
mapping defined in equation (4). The gain term, Gy, allows a further
degree of freedom in the channel model: note that to avoid scaling
ambiguities, Gy 2 1. Makhoul [3] suggests a similar model when
analysing speech using linear prediction.

A significant problem with this model as presented is its inabil-
ity to accurately model the phase response of the system transfer
function [6]: the phase response of the subband AR model at the
subband boundaries is zero, whereas the phase response of the ac-
tual transfer function will not be zero at these points. Techniques
for dealing with this phase modelling problem are discussed else-
where [6], but are presently not considered in this paper.

2.3 Prior density functions

Bayesian parameter estimation, as introduced in §3, requires the
assignment of a prior probability density function (pdf) on any un-
known parameters in the system. For a real, stable, minimum-phase
all-pole or AR process, a, should ideally only take on values which
lie in the stability domain. However, it is usual to place a Gaussian
prior on the parameters: a|c? ~ A (0p, c? 82Ip) ,6 eRT. A
standard prior for scale parameters, such as filter gains and vari-

ances, is the inverse-Gamma density: 62 o, B~ 59 (%, %) 1 As

I'The inverse-Gamma pdf is p(x) = .#¥ (x| a,pB) = %x’(“ﬂ) et

for x > 0, and zero otherwise.
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Figure 2: Subband modelling and the indices mapping.

discussed in §4, for simplicity, model-orders, changepoints, and hy-
perparameters are assumed to be known; of course, in practice, they
also need to be estimated.

3. BAYESIAN BLIND DECONVOLUTION
The source, 5(¢), in block i € .#, as given by (1), may be written as

e; =s;+S;b;

where [e;];—; 41 = e(t), [Silt—n+1 = s(¢), the data matrix is
[Silt—t+1,4 = 5(t —q), and b; is a vector of parameters [b;], = b;(g),
and where 7 € 7}, ¢ € 2;. Denoting 6 = {67}, b = {b;}, it is
shown in [1] that the likelihood function for the clean speech, s, is

4 I Isi +Sibil*
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where ||-|| denotes the Euclidean norm. Moreover, due to the causal
relationship x(¢) = f(s(¢), s(r — 1), s(t — 2), ...), the Jacobian, J,
in the probability transformation from the random process s(z) to
x(1) is a function of the gain parameters, G;, only, and is given by

J=1I GlK’ . Hence, the likelihood function for the observed signal,
X, is given by

1
p(X‘ 6’ Gvb7¢) = 71’(5‘ Gvb)
MG’

where ¢ contains the temporal and spectral changepoints, model
orders, and hyperparameters in the priors, and 0 is the set of channel
parameters including the gain terms. Note that by setting G| =
1, and observing that the source excitation is constant across all
subbands, there is no gain ambiguity between the source signal, and
the relative subband gains.

Applying Bayes’s theorem, the posterior pdf, p (6, o, b| x, ¢),
for the unknown system parameters given an observation of the state
of the system, x, and the assumptions in ¢, is given by

p(8,0,b|x,9)< p(x|6,0,b,9)p(6,0,b|9)

where p (0| ¢) represents any prior belief. Assuming {b;, 0;} are
independent between blocks, then using the prior densities in §2.3,



Algorithm 1 Inverse filtering of subband channel

1: Let X(k) = % (x(¢)) be the DFT of {x(¢)}. Assume the para-
meters a;(p) and G; are given.
2: for each subband with boundary frequencies f; and f;, | do
3:  Determine corresponding frequency bins &; to k4.1 — 1, and
evaluate the baseband AR spectrum:

K; Gi
H, (k) = f _ mjlk=k)p
L+ X7 a(p)e Fih
4: forallke {k;, ..., k41— 1} do
5: Evaluate Segt (k) = % and similarly for the correspond-
ing conjugate frequency components (see Figure 2 to see
this correspondence).
6: end for
7: end for

8: Evaluate the inverse DFT s(r) = .Z ! (Sext (k).

and marginalising the nuisance parameters, b and o, it can be
shown that the posterior density for the channel parameters is [1]:

p(8]x,9) (619)
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where R; = T"%"H,ie///,and

s(t) = £~ ({x(1)}] 6) (7b)

Equation (7a) is written in terms of s(r) to emphasise that the poste-
rior can be efficiently calculated by ‘inverse filtering’ the data, x(¢);
this is achieved as indicated in Algorithm 1, although there are more
efficient methods. A maximum marginal a posteriori (MMAP) es-
timate for the parameters 6 can by calculated by evaluating:

6 =argmaxp(6|x, 9) ®)

In fact, further computational savings can be obtained by noting
that since the discrete Fourier transform (DFT) is an orthonormal
transformation, the pdf of the DFT of a Gaussian random process is
still Gaussian [7]. As a result, equation (7a) can be expressed in an
equivalent form where the vectors s; and matrices S; are filled with
the DFT signal values rather than the time domain samples. Thus, in
Algorithm 1, all the calculations can be performed in the frequency
domain. The prior p (0] ¢) is assumed to be uninformative.

The MMAP estimate for the unknown channel parameters, 0,
can by found by solving (8). This optimisation can be performed
using deterministic or stochastic optimisation methods; stochas-
tic optimisation methods have a far superior performance when
the dimensionality of the parameter space is high, although deter-
ministic methods such as, for example, the Nelder-Mead Simplex
method [11] as implemented in MATLAB, are more straightfor-
ward to implement. The Gibbs sampler is an example of a stochastic
method, and can be used to obtain samples of the channel parame-
ters which can, in turn, be used to to obtain a minimum mean-square
error (MMSE) estimate for 6. As discussed in [1], it is reasonable
to assume that the MMSE estimate is approximately equal to the
MMAP estimate. Details of both of these optimisation are omitted
here due to space constraints, although a similar implementation
can be found in [1].
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4. SYNTHETIC EXAMPLE

A synthetic example is presented to demonstrate this approach. It
is expected that the results presented here will be extended to a
more realistic example in future work. A synthetic BSAR process
is used to model the source, whose parameters are generated by
modelling discontiguous blocks of a real speech signal as a sta-
tionary AR(Q) model and estimating the parameters using the
autocorrelation method. This ensures that the synthetic data, gen-
erated in contiguous blocks using these parameters, is stable, non-
stationary, and partially reflects the statistical properties of a real
signal. The source is modelled as 20th-order, with L = 20 blocks,
and with each block length 7; = 500. The “typical” channel pre-
sented in [1, 7], which is that of an acoustic gramophone horn, is
also used in these experiments; the magnitude response is shown in
Figure 3. In the blind deconvolution problem, the subband model
orders, subband boundary positions, and the number of subbands
are all unknown and must be chosen. In general, these unknown
parameters can be built into a general probabilistic model, and their
values estimated by sampling the joint posterior distribution for all
these variables using MCMC methods. This is left as further work,
and for simplicity, these parameters and all hyperparameters are as-
sumed to be known.

To measure the performance of the algorithm, the ground truth
for the channel is known in this experiment. The channel model-
orders can be estimated by driving the channel with white noise, and



using Akaike’s B-Information criterion (BIC), which gives approx-
imately the same solution as if the joint pdf of the AR parameters
and model order were maximised. It can be shown that the channel
response is accurately modelled over the full frequency band by a
70th-order all-pole model. The parameters for the subband model
can be determined using the method described in [7], and if the sub-
band boundaries are chosen to be at angular frequencies w; = 0.357
and @, = 0.67, the required model orders are P| = 24, P, = 4 and
P3 = 13. Note that these total substantially fewer parameters than
for the fullband model.

The synthetic source signal is filtered by the full channel re-
sponse, and (8) is maximised using the Nelder-Mead Simplex
method as implemented in MATLAB.2. The estimated channel
response is shown in Figure 3, along with the equalised response
given by the ratio of the actual and estimated responses. The
equalised response is still somewhat jagged, but nevertheless flatter
than the actual channel response. Note the position of the subband
boundaries, as indicated by the vertical dotted lines; there are slight
discontinuities at these points. Extensions to the model to prevent
such discontinuities are discussed in §5.2. The subband model com-
pares extremely favourably with the results obtained in the fullband
case presented in [1], as shown in Figure 4 (an offset between the
responses is shown in this figure). In both cases, despite the less
than perfect equalised response, listening tests indicate a noticeable
improvement.

5. MODEL EXTENSIONS

This section briefly discussions some extensions to the presented
model; the performance of these extensions when applied to blind
deconvolution are currently being investigated.

5.1 Subband Source Model

The source model in §2.1 is a “full-band” source model. Although
speech can be modelled by a relatively low-order BSAR model, a
subband BSAR model has the advantage that different frequency
bands can have different temporal block lengths over which the sig-
nal is modelled as stationary. Hence, there may be some frequency
bands over which the speech signal is stationary over a longer pe-
riod of time: for example, low frequencies, where the pitch of the
signal remains approximately constant.

5.2 Subband Boundary Constraints for Channel Model

Since the transfer function is modelled in different subbands inde-
pendently, discontinuities arise at the subband boundaries. These
discontinuities can be avoided by placing a constraint on the sub-
band all-pole parameters to ensure continuity across subbands. This
constraint is derived from (5) as follows: note that if k = k;; in
subband / 41, then

G
H(k) = —— = —— (9a)
1 +2p:1 ajy (17)
and k = k11 in subband [, then:
G
H(k) L (9b)

T ()P a(p)

Equating these leads to the constraint:
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2When using the Nelder-Mead Simplex method in a high-dimensional
parameter space, the optimisation routine should always be restarted at a
point where the algorithm claims to have found a minimum; this is to ensure
that the algorithm is not fooled by local minima, or any other anomalies that
might influence the convergence criteria [11]

Recall that an all-pole model spectrum has zero gradient at zero
frequency, and the half sampling frequency; as a result, this formu-
lation provides continuity in the function value and first derivative
of H(k), but not necessarily in the second or higher derivatives.

By using continuity constraints, the unconstrained optimisa-
tion exercise in equation (8) becomes constrained. This constraint
can be implemented in various ways, either through the prior den-
sity p( 60| ¢), or solving (8) subject to the constraint in (10). Un-
fortunately, this complicates even further an already difficult op-
timisation problem. An alternative, but suboptimal approach, is
to reduce the parameter space of each subband filter by one; this
is achieved by rewriting (10) such that, for example, a;11(P41)
is expressed in terms of the other parameters in that subband,
{aj1(1), ..., a;11(Ps1— 1)}, Gyyq, and the parameters in the ad-
jacent subband {a;(1),...,a;(P;)}, and G;. This latter technique
has proved successful, and some general details of how this is im-
plemented may be found in [7].

6. CONCLUSIONS

Single channel blind dereverberation has previously been consid-
ered in [1], where it is assumed a nonstationary source can be mod-
elled by a BSAR process, and the RTF by an all-pole filter. Unfortu-
nately, this approach suffers from its lack of scalability, and would
be unable to deal with, for example, dereverberation of speech mea-
sured in a real room where extremely high model-orders are re-
quired. A solution is to use a subband model for the RTF. This
paper has demonstrated that this approach is feasible and, in the ex-
ample shown, the performance is equal to the fullband approach.
The greatest advantage of the subband model is the ease with which
it can be extended to more complicated acoustic impulse responses,
by using a greater number of subbands with the smaller model or-
ders in each, such that the overall number of parameters is substan-
tially fewer than in the fullband case.
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