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Université de Reims Champagne-Ardenne

Campus du Moulin de la Housse, B.P. 1039, 51687 REIMS Cedex 2, FRANCE
phone: +33(0)326918221, fax: +33(0)326913106

email: cyril.gobinet,abdelkamel.elhafid,valeriu.vrabie,regis.huez,danielle.nuzillard@univ-reims.fr

ABSTRACT

The importance of positivity constraint in source separation tech-
niques for spectroscopic applications is presented in this paper.
Microspectrofluorometry measures fluorescence signals emitted by
the analyzed tissues. The information associated to each pure chem-
ical species must be estimated in order to characterize these tissues.
Source separation techniques are well suited to this task. However,
pure species spectra and concentrations non-negativity must be con-
sidered to obtain a realistic solution.
Applications of fluorescence spectroscopy on wheat and barley
grains are analyzed. Each one has specific properties suggesting
the use of two conceptually different algorithms: Non-negative Ma-
trix Factorization (NMF) and Second Order Blind Identification fol-
lowed by a positive procedure (“positive SOBI”). We show that no
complementary experiments are needed to identify chemical species
of the analyzed tissues.

1. INTRODUCTION

Microspectrofluorometry highlights the vibrational states of
molecules by measuring at different wavelengths the intensity of
light interacting with the analyzed tissues. The measure in one
point, indexed by the wavelength, provides a spectrum. Chemi-
cal species are mixed with different proportions in each measure
point. Dataset can be obtained when several measures are realized
at different points. Recorded spectra contain non interpretable in-
formation about pure compounds and their concentrations. A re-
current problem in biophysics is obviously to separate individual
information from collected spectra. On the one hand pure species
spectra need to be estimated in order to identify these species, and
on the other hand concentration profiles are requested to analyze
species repartition in the sample. Whatever is the chosen algorithm
to solve this source separation problem, positivity of pure species
spectra and concentration profiles must be incorporated to ensure
convergence to a physically meaningful solution. To illustrate this,
two problems of source separation in fluorescence spectroscopy on
wheat and barley grains are solved by different approaches.

Since 1970, researches have carried through development of
several source separation approaches based on Principal Compo-
nent Analysis (PCA). Chemistry and environmental sciences are
the first fields which have initiated source separation researches by
work of Lawton and Sylvestre [1]. An efficient separation is ob-
tained for a two sources application. Extensions to more than two
sources have been developed by Malinowski [2], and Windig et
al [3]. As pure species spectra are positive and often overlapped,
the decorrelation assumption is not justified. Due to the positivity,
more realistic constraints and assumptions have been taken into ac-
count. Paatero [4] resolves a weighted least square formulation of a
non-negative factor analysis problem. The work of Chew et al [5] is
based on a transformation of the right matrix given by the singular
value decomposition of the dataset. This transformation yields to
the simplest spectrum associated to a characteristic spectral band.
Positivity and intensity constraints are added to ensure convergence

to a realistic solution. Nevertheless, these methods assume a priori
knowledge as the variance of each recorded spectra for each wave-
length, or characteristic spectral bands of unknown sources.

Since 1990, signal processing community investigates the blind
source separation methods [6]. The main result is the develop-
ment of Independent Component Analysis (ICA) [7], which relies
on mutual statistical independence of underlying sources. Positiv-
ity constraint-based extensions for higher-order identification meth-
ods have been recently developed [8, 9]. Since most fluorescent
molecules have very large and unstructured fluorescent bands [10]
and spectra have positive intensities, the independence can’t be as-
sumed. It will be shown that second-order independence and lag-
dependent correlation of concentration profiles are more realistic
assumptions, leading to the use of Second Order Blind Identifica-
tion (SOBI) [11] for the barley grain analysis. SOBI is a very pop-
ular algorithm in spectroscopic applications such as Nuclear Mag-
netic Resonance, Raman and Infrared Spectroscopy, which are de-
scribed in [12, 13, 14]. As positivity is essential for our applica-
tions, a procedure to force the positivity of sources and mixing ma-
trix is added, leading to a “positive SOBI” algorithm. For the wheat
grain analysis, the second order independence is shown to be an
unrealistic solution. In this case of positive mixtures of positive
sources, a specific algorithm named Non-negative Matrix Factor-
ization (NMF) [15, 16] can be employed. It was proved that this
technique is very efficient [17], even for the barley grain analysis.

The purpose of this article is to show that quite similar problems
of source separation can be solved by different approaches, and that
positivity constraint is essential as soon as spectroscopic data need
to be processed. In section 2 we describe two fluorescence spec-
troscopy applications on wheat and barley grains. Based on their
characteristics, algorithms used for each application are briefly de-
scribed in section 3. These algorithms are the NMF for the wheat
grain application and “positive SOBI” for the barley grain study.
Section 4 presents results of their applications. Finally, we conclude
in section 5.

2. TWO DIFFERENT PROBLEMS OF FLUORESCENCE
SPECTROSCOPY

In order to illustrate the importance of positivity constraint, two dif-
ferent applications of fluorescence spectroscopy are studied.

2.1 Wheat grain

Auto-fluorescence emission spectra from a transversal section of
wheat grain were recorded using a confocal laser microspectrofluo-
rometer equipped with an optical microscope. The excitation laser
at 365 nm scans an XY area of several m m2 in a point by point
mode. Each spectrum was recorded in 128 wavelengths in the spec-
tral interval from 350 to 670 nm. A 20× 20× 128 data cube is
obtained. For clarity reasons, only few spectra are represented in
figure 1(a). Recorded spectra contain mixed information of pheno-
lics, which are the most auto-fluorescent materials in a wheat grain.
The aim is to separate pure molecular species information in order



to characterize them and to analyze their spatial distributions in a
wheat grain. As the spectral resolution is good, a precise estima-
tion of pure species spectra is hoped. In the opposite way, as only
a 20×20 pixels image is used, the poor spatial resolution prevents
the visualization of fine underlying biological structures. For bio-
physicists, a species will be found to be related with the aleurone
layer. Aleurone contamination in different millstreams will thus be
quantified thanks to this indicator species.

2.2 Barley grain

Confocal laser microscpectrofluorometry enables also to visualize
autofluorescence of vegetal walls. A set of four excitation laser at
364, 488, 543 and 633 nm and a set of 9 emission filters define 19
acquisitions conditions leading to the recording of 19 spectral im-
ages of a barley grain [18]. As these acquisitions are made in long
or band pass filters, recorded signals are indexed by the number of
experimental conditions. Nonetheless, to simplify the notation and
the comprehension, we denote them “spectra”. Each image is com-
posed by 512× 512 pixels, each pixel corresponding to a physical
point of the barley grain. A 512× 512× 19 data cube is obtained.
Few spectral images are shown in figure 1(b). Only external tis-
sues are visible by fluorescence with these experimental conditions.
The aim is to identify the different in situ tissues thanks to the iden-
tification of pure species and the estimation of their concentration
profiles. Thanks to the good spatial resolution of data, biological
structures will be isolated by estimation of concentration profiles of
pure species. Nevertheless, as long or band pass filters are used, the
spectral resolution is low. Pure species spectra won’t be estimated
with fineness. For biophysicists, a long term goal is to follow the
evolution of tissues during transformation process such as grinding,
flour or paste.

(a) Wheat grain (b) Barley grain

Figure 1: Data cubes

2.3 Datasets characteristics

In order to choose the well adapted algorithms, applications char-
acteristics are studied. The first and obvious feature is the instan-
taneousness data recording because scattered light is collected by
CCD detectors. Physical laws governing fluorescence spectroscopy
mechanisms are well known to be linear. Recorded spectra thus
result from weighted sum of spectra of pure species present in the
analyzed tissues. This instantaneous and linear model is:

X = AS (1)

where X is the data matrix obtained by concatenating consecutive
lines of the recorded data cube, X ∈ R400×128 for the first appli-
cation and X ∈ R47021×19 for the second one (because only 47021
from 512×512 spectra are not vanished). S is the source matrix of
dimensions M1×128 respectively M2×19. A is the mixing matrix
(or concentration coefficients) of dimensions 400×M1 respectively
47021×M2.

Positive recorded data X need to be expressed as a factorization
of two positive matrices A and S. By positive matrix, we mean

that each element of the matrix is positive. Estimated spectra and
concentrations will thus be physically meaningful.

Since most fluorescent molecules have very large and unstruc-
tured fluorescent bands [10] and spectra have positive intensities,
pure species fluorescent spectra don’t fulfill mutual independence
even at the second order. ICA methods are not appropriate to
solve the equation (1), but they may solve the transpose problem
XT = ST AT . In blind source separation language, sources are now
lines of AT , i.e. pure species concentration profiles, and the mix-
ing matrix is represented by ST , i.e. each column of ST being a
pure species fluorescent spectrum. Mutual independence of pure
species concentration profiles is now required. A biological anal-
ysis is thus needed to argue about independence of concentration
profiles. As every biological element, a wheat or barley grain has
a well organized structure, so pure compounds are not randomly
distributed. A dependent structure between pure compounds con-
centration profiles exists, which implies that ICA algorithms based
on higher order statistics are not adapted. However for second order
independence and lag-dependent correlation of concentration distri-
butions, SOBI-type algorithms [11] can be employed.
For the first application, a previous study [19] has shown that wheat
grain pure species are diffused with overlapping concentration areas
but also with zones where species don’t exist simultaneously. This
property implies that the matrix A (made up by concentration coef-
ficients) is a sparse matrix. But, due to the positivity of the concen-
trations, the second order independence assumption is unrealistic,
so SOBI-type algorithms are useless. In this case, the formulation
of equation (1) is very similar to that given by Lee and Seung in
[16], leading to the use of NMF algorithm.
The second application presents different characteristics. Barley
spectroscopic data have been measured in a very small area of the
external layer. Each point of measure has a much better spatial res-
olution than previously. The different tissues are very well identi-
fied and parted from the others. A preliminary study [18] shows
that each tissue is almost composed by only one auto-fluorescent
species. Second order independence and lag-dependent correlation
of concentration profiles are thus almost fulfilled assumptions. Fur-
thermore, the pure species are by definition primary compounds, so
their associated spectra are linearly independent. As a consequence,
SOBI-type algorithms can be used for this application. However,
another a priori information must be exploited : the non-negativity
of sources and mixing matrix.

Applications characteristics being known, a mathematical for-
mulation of problems is possible.
Problem 1: Knowing a positive data matrix X , find a factorization
by two positive matrices A and S such that X ≈ AS and that A is a
sparse matrix.
Problem 2: Knowing a positive data matrix XT , find two positive
matrices ST and AT solving XT = ST AT , such that columns of ST

are linearly independent and lines of AT are second order indepen-
dent.

Both problems are now well defined. In the following we
present the suitable algorithms to resolve them.

3. WELL SUITED ALGORITHMS

3.1 Non-negative Matrix Factorization

Pure species spectra are mutually dependent, but also pure species
concentration profiles, so ICA algorithms are useless. The formu-
lation of problem 1 is similar to that given by Lee and Seung in
[16] to describe the goal of NMF. Our choice thus turns towards
this algorithm.

The required assumption is the positivity of factorization ma-
trices. Based on it, a closely related to the Kullback-Leibler diver-
gence objective function is used to derive a simple and very efficient
optimization algorithm. Multiplicative update rules of S = {Si j}
and A = {Aki} are mathematically expressed by

Si j ← Si j
å k AkiXk j/(AS)k j

å l Ali
(2)



Aki ← Aki
å j Si jXk j/(AS)k j

å m Sim
. (3)

This algorithm has been proved to converge to a local minimum of
optimized cost function. One of its advantage is that it is free from
any step size parameter.
As said, this method will be applied to wheat grain.

3.2 Second Order Blind Identification and positive procedure

Several ICA algorithms have been recently developed in order to in-
sert the positivity constraint of sources [8, 9]. However, these algo-
rithms exploit higher order cumulants. As mentioned, only second
order independent and lag-dependent correlation of pure species
concentration profiles can be assumed. Nevertheless, second or-
der independence algorithms based on positivity constraint haven’t
been yet developed. That’s why we use a two step method.
The first step consists to apply SOBI [11] to the data matrix XT .
A positive procedure [13] is used in the second step. Negative val-
ues of the sources AT are set to zero. A least mean square approxi-
mation estimates pure species spectra:

ST = XT A(AT A)−1. (4)

The negative elements of the obtained mixing matrix ST are set to
zero. A new least mean square approximation is used in order to
estimate pure species concentration profiles:

AT = (SST )−1SXT . (5)

This second step is repeated until convergence is reached.
A remark must be done about the legitimacy of the positive

procedure. A pure species is the major compound of a tissue, but
is also present in little concentrations in the other tissues. Second
order independence of concentration profiles is not totally verified
in the barley grain. Thus an estimation error is done by SOBI on
AT . Consequently, an error is also made on ST . Even if these errors
are not important, they can lead to negative matrix elements, which
is in contradiction with physical constraints. A procedure to avoid
negative values relaxes the second order independence assumption.

4. APPLICATIONS

4.1 NMF results on wheat grain

Each spectrum of the dataset X presented in section 2.1 has been
normalized to unit area. This preprocessing step is useful to speed
up convergence of NMF algorithm. The only adjusting parameter
is the number of underlying sources. Data were then injected in the
algorithm described by equations (2) and (3).
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Figure 2: Pure species spectra estimated by NMF.

Principal Component Analysis suggests a three or four sources
model. A preliminary study [19] and results analysis of biophysi-
cists confirm good estimations obtained with M1 = 3 pure species.
As solutions are dependent from initialization of the algorithm, the

mean solution over 100 trials has been computed. Resulting spectra
are represented in figure 2. Expert analysis associated the solid line
spectrum to bound ferulic acid, the dashed line to free ferulic acid
and the dotted line to p-coumaric acid. Pure species concentration
distributions can be viewed in figure 3 thanks to chemical maps.
Each image corresponds to a column of the estimated mixing ma-
trix A. The concentration scale decreases from black to white. It can
be noticed that bound ferulic acid is concentrated at the periphery
of the wheat grain, while its free form is mainly at the middle. P-
coumaric acid is slightly present in wheat grain [17]. As mentioned,
good spectral respectively poor spatial resolution are obtained for
this application.

Figure 3: Pure species concentration profiles estimated by NMF.
From left to right: bound ferulic, free ferulic, p-coumaric acids.

Thanks to these results, biophysicists concluded that the aleu-
rone layer is characterized by bound ferulic acid.

4.2 “Positive SOBI” results on barley grain

Concentration profiles of barley grains have been shown to be sec-
ond order independent and to possess a lag-dependent correlation.
SOBI has been applied to dataset XT presented in section 2.2.
Whatever the number of sources, estimated sources and mixing co-
efficients exhibit some negative values. Positivity constraint as de-
scribed in section 3.2 is required to force the solutions to positiv-
ity. But, as soon as iterative procedure of equations (4) and (5)
is run, second order independence is no more completely fulfilled
by new estimated sources. Consequently, a compromise must be
done between second order independence and positivity of sources.
Three parameters need to be fixed by the user. The number of
sources is chosen equal to M2 = 4 as suggested by a preliminary
PCA step. The number of correlation matrices to be diagonalized is
taken equal to 7, because results are slightly better. But this number
doesn’t have much influence on results. Positive procedure itera-
tions are equal to 20 to ensure that each element of sources and
mixing matrices are positive. Even if a tissue is constituted by a
major species, other species may be present in small quantities as
was said in section 2.3, so the positivity is preferred here to second
order independence.

Figure 4: Spatial repartition of pure species estimated by “positive
SOBI”

Estimated spatial repartitions of pure species are represented
in figure 4. Different biological structures appear in these images.
A specific layer is almost composed by a single pure fluorescent
species, but it can be observed that images A and B are very related,
just a scale intensity coefficient differs. A single chemical species



seems to have generated these two images. Identification of these
species can be done thanks to the study of estimated pure species
spectra, which are depicted in figure 5 (solid lines). As mentioned,
these plots denoted “spectra” are indexed by the number of experi-
mental conditions.
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Figure 5: Pure compounds spectra estimated by “positive SOBI”
(solid lines), ferulic acid (dotted lines) and lignin (dashed line)

It is well known that the most auto-fluorescent compounds are
ferulic acid, lignin and cutin. Reference spectra of ferulic acid and
lignin have been measured and are available in figure 5 (dotted re-
spectively dashed lines). It is easily seen that a weighted sum of first
and second spectra represented by solid lines in figure 5 is similar
to the ferulic acid spectrum (dotted line). The observed correlation
between image A and B of figure 4 is thus confirmed. The third
spectrum represented by solid line is associated to the lignin spec-
trum (dashed line). Cutin is represented by the fourth spectrum of
figure 5. Knowing pure species spectra and their concentration pro-
files, their biological localization can be discussed. Ferulic acid is
present in majority in the aleurone layer and in the lemmae as can be
seen on images A and B of figure 4. Cutin is concentrated in the top
waxy layer as it is depicted on image D, while lignin is a major con-
stituent of the pericarp and the bottom waxy layer of figure C. Each
tissue is thus associated to a singular pure species. As suggested,
good spatial respectively poor spectral resolution are obtained for
this second application.

A remark must be done. The mathematical formulation of prob-
lem 2 suggests also the use of NMF. Results are identical to those
exposed on figure 4 and 5. However, computational cost is more
expensive. “Positive SOBI” is thus a well alternative to solve prob-
lems when computational time must not be too long, especially
when data cube dimensions are large.

5. CONCLUSION

Two fluorescence spectroscopy applications have been described.
Even if the final goal and experimental measures are quite similar,
dimensions of datasets and physical respectively chemical charac-
teristics of each application are different. Conceptually different
source separation methods must thus be used. However, biophysi-
cists need to have physically interpretable results. Positivity of con-
centration profiles and spectra of pure chemical species is thus re-
quired. Whatever is the chosen algorithm, this constraint force al-
gorithms to converge to a realistic solution. A study of applications
properties and the importance of positivity constraint convince us
to exploit advantages proposed by NMF and “positive SOBI”. No
complementary experiments are needed to identify chemical species
of the analyzed tissues.
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