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ABSTRACT

This study tests three methods (algorithms of G. de Krom, C.
d'Alessandro et al. and P. Boersma) to estimate the Harmon-
ics-to-Noise Ratio (HNR) in speech. Tests are made on two
databases of naturally connected speech designed for voice
quality analysis. First, results of the three methods are com-
pared, then the relevance of each method is analysed sepa-
rately. The conclusion is that they are all good indicators of
the amount of noise in speech, and though their accuracy is
limited, they are efficient for voice quality analysis.

1. INTRODUCTION

The estimation of the aperiodic component in speech is very
useful for voice quality analysis, as aperiodicity is known to
characterize certain phonation types [1]. Noise measurement
can also be used to classify voice pathologies ([2], [3]).

In this study we will focus on the two main sources of
aperiodicity in the glottal flow component :

e  Additive noise is caused by a constriction in the vo-
cal system, leading to a turbulent flow. This study
will focus only on aspiration noise, due to a con-
striction at the glottis. Additive noise is supposed to
be quasi-stationnary and gaussian [4] ; it character-
izes especially breathy voices.

e Jitter and shimmer are noises which are not additive
but structural. They correspond to random varia-
tions of the fundamental period and amplitude of the
speech signal, and characterize rough voices.

Some methods have been proposed to quantify the pres-
ence of noise in speech. Jackson [5], d’Alessandro et al [6],
de Krom [7], Stylianou [8] have designed algorithms to split
the speech signal into its periodic and aperiodic components.
The HNR (Harmonics-to-Noise Ratio) is defined as the log
ratio of the energies of these two components. Other meas-
ures of the presence of noise were established without having
to retrieve the two components ([9], [10], ...).

In our present work we have chosen to implement the
two often referred algorithms developped by de Krom and
d’Alessandro et al. Then we compare them to each other and
to Boersma's method [9], used in the software Praat [11]. We
consider none of the three methods to be a reference tech-
nique, however the consistency of the three methods in sort-
ing utterances according to their HNR would allow us to use
any of them for voice quality classification tasks.

2. DESCRIPTION OF THE ALGORITHMS

For convenience reasons we will call the de Krom’s method
"method A", d’Alessandro’s "method B" and Boersma’s
"method C”.

2.1 Method A : de Krom’s algorithm
It is a frequency-domain method, based on a harmonic analy-
sis [7]. The following linear speech model is assumed :

s(1) =e(t)*v(1) = (p(t) +a(1)) *v(1) (1
where s(?) is the speech signal, e(?) the excitation signal con-
stituted of a quasiperiodic component p(?) and an aperiodic
component a(?) ; this excitation is convolved with the vocal
tract impulse response v(?).

The first step consists of windowing the signal. The
window has to be large enough to allow accurate harmonics
detection but not too much in order to respect the pseudo-
stationarity hypothesis. The windowed speech segments are
overlapping segments ; the Hanning window is chosen.

Then the real cepstrum (real part of the inverse Fourier
transform of log spectrum) is computed. The harmonics of
the spectrum give rise to cepstral peaks called rahmonics,
the first one corresponding to the fundamental period. As a
consequence of the log operation, rahmonics contain infor-
mation about the periodic excitation only. The Fourier trans-
form of the "rahmonic comb-liftered" cepstrum provides a
representation of the aperiodic speech component's log spec-
trum. Then the periodic component spectrum and the HNR
can be easily retrieved. The HNR is defined by de Krom as
the difference between the log spectra of speech and aperi-
odic components ; he showed it to be sensitive to both addi-
tive noise and jitter. We prefer to compute the log ratio of the
energies of the periodic and aperiodic components spectra.

2.2 Method B : d'Alessandro's algorithm

This method is also based on a harmonic analysis [6]. The
assumed speech model is the model proposed in (1). A Linear
Prediction (LP) analysis is first used to estimate the excita-
tion signal, as its samples are much less correlated than the
speech signal samples. The aim is to reduce undesireable
effects in the analysis due to truncation of higly-correlated-
samples signals. The Hamming windowing function is then
applied to the overlapping excitation segments.

The pitch is defined as the frequency corresponding to



the first rahmonic of the residual cepstrum. Then the residual
amplitude spectrum is equally separated into its periodic and
aperiodic regions, delimited as the positive and negative re-
gions of a sinuisoid whose frequency is the pitch. The output
of the algorithm is an estimate of the excitation's aperiodic
component. For this, an extrapolation method is proposed,
assumed that the aperiodic region is mainly constituted by
noise spectrum, but the periodic region spectrum is due to
both periodic and aperiodic components. The aperiodic com-
ponent is then estimated, starting from the aperiodic region
spectrum and going back and forth between frequency do-
main and time domain, while imposing finite duration con-
straint in the time domain, and known noise spectrum con-
straint in the frequency domain. Several iterations are needed
to retrieve a correct estimation of the excitation's aperiodic
component. Then, substracting it from the excitation signal
provides its periodic component. The speech periodic and
aperiodic components can be recomposed by LP synthesis,
then the HNR is computed. This HNR estimation has been
shown to be sensitive to additive random noise as well as to
jitter and shimmer.

As methods A and B require pitch calculation, we use a
common pitch estimation method based on autocorrelation.
This reduces the algorithms execution cost and simplifies the
comparison. A voiced/unvoiced detector is also included.

2.3 Method C : Boersma's algorithm
Boersma's method does not include frequency domain proc-
essing : it uses the short-term autocorrelation function of
speech to determine the pitch, then the HNR [9].

The autocorrelation of a signal is defined as :

r(r)2 jx(r) x(t+7)dt-

The fundamental period T is defined as the value of 7
corresponding to the highest maximum (index zero excluded)
of the short-term autocorrelation function (called hereafter
1,(7)). The energy of the windowed speech signal is the value
of the short-term autocorrelation function at its index zero :

r.(0)=r,(0)+7,(0)>

7, (0) and r,,(0) being the respective energies of the peri-
odic and aperiodic components.

The normalized autocorrelation is defined as:

n(0) .
r.(0)

Given the periodicity of the periodic component auto-
correlation function and assuming an additive white noise
(uncorrelated with itself), the energy of the periodic compo-
nent is given by :

r(o)=

r,0)=r,()=r/(T) -
then the energy of the aperiodic component :
7, (0)=1=7,(0)=1-r(T;)-
The HNR is defined as :
r,(0)
7,y (0)
Though this algorithm is based on an additive white

noise aperiodic component, it was shown to be correctly sen-
sitive to jitter also.
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Figure 1. HNR estimation with method A, varying the pitch (80 to
300 Hz) and the imposed HNR (0 to 50 dB). Each curve corre-
sponds to the variation of the HNR estimate for a constant pitch.

3. TESTINGS

Methods A & B were first tested on synthetic speech, in or-
der to check their efficiency to detect additive random noise
and to set their parameters. Then they were applied together
with method C to two naturally connected speech databases.
The first one is designed for general voice quality testings
[12], and the second one for loudness analysis.

3.1 Synthetic speech

Speech is generated by the convolution of an excitation sig-
nal and an all-pole vocal tract filter. We consider a four-
formants vocal tract, and the excitation signal is a periodic
LF-modelled source signal [13] plus additive white noise.
Varying parameters are the window length, the noise duration
(relative to the fundamental period) and the pitch. The aver-
age HNR is calculated on voiced utterances of 200 funda-
mental periods. Testing method A shows that the window
duration has an influence on the HNR estimation, especially
for high values of the HNR (Fig. 1), in the sense that both
short fundamental periods and long observation windows
lead to a better HNR estimation. The observation window
has to be wide enough for an accurate HNR estimation, but
narrow enough to respect the pseudo-stationarity hypothesis.
Method B is observed to be less sensitive to the window
length.

3.2 Natural speech

3.2.1Database designed for global voice quality testings [12]
A male speaker pronounces the same sentence (American
English) with different voice qualities : modal, tensed,
creaky, rough, laughing, etc. There are 75 utterances (16-bit
wav files) sampled at 44100 Hz. Methods A & B are used
with the same parameter settings as in tests on synthetic
speech. We test two window lengths : 46 ms (2048 samples)
and 92 ms (4096 samples) ; 92 ms is not theoretically suit-
able for connected speech analysis but our experiences on
synthetic speech have shown the importance of using a large
observation window. Time shift between two consecutive
frames is 10 ms. For the remaining part of this paper, the
variable we will refer to as HNR is the average HNR of all
voiced frames for each utterance.

As the three methods do not provide the same range of
HNR, we cannot compare their results directly. So we build a
relative scale, based on the observation that for the three
methods, the two utterances that give minimum and
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Figure 2. Distributions of the divergence coefficients : on the left,
with a 46-ms window; on the right, with a 92-ms window.

maximum HNR are the same (for this we only consider ut-
terances in which pitch analysis results in many voiced
frames - about 80% of the utterances are concerned). For
each method we score every utterance according to its rela-
tive position compared to these minimum and maximum,
introducing the Relative HNR (RHNR) :

HNR, .—HNR, .,
RHNR, , = . mn_
7 HNR,__—HNR

i,max i,min

HNR;; being the average HNR estimated for the utterance j,
method 7 (min and max are the indexes of the utterances giv-
ing the extreme values of HNR; they are the same for the
three methods).

The RHNR are then compared between the three meth-
ods. For this, we calculate the maximum difference between
the three RHNR of the same utterance :

A, =max(RHNR, ,~ RHNR, ,)-

We name these indexes the divergence coefficients : for the
same utterance, they reflect the maximum difference between
results of the three methods. Most of the divergence coeffi-
cients are contained between 0.1 and 0.2 (Fig.2) which illus-
trates a small (but not negligible) difference between the es-
timation methods. Moreover, methods are more consistent
with each other when using the largest window. Most of time
the divergence coefficients are high because one of the three
methods provides an estimation that is very different from
the two others. A detailed analysis leads to the following
conclusions.

Method A "underestimates" the RHNR ("under/over es-
timation" means here that the RHNR is quite low/high com-
pared to the two other methods) for soft or rough voices (see
Fig. 3). This can be explained by comparing methods A and
B, which is easier as they are similar in their basic principles.
In method A, the aperiodic region width depends on the
harmonics amplitude, which is smaller for soft or rough
voices than for modal voices; with method B, the aperiodic
region width is fixed. Though these two methods differ in the
rest of their algorithm, this could partially explain the
estimation differences. It is also observed that method A
underestimates RHNR of voices that are both shouting and
rough (their RHNR estimate is 0.34 for method A, and ranges
from 0.51 to 0.72 for methods B & C).

Method C overestimates RHNR of voices with a very
high pitch (i.e. the speaker adopts a 500-Hz pitch) : RHNR is
about 0.96 for method C, and ranges from 0.63 to 0.72 for
methods A & B. But more generally, method C presents
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Figure 3. Distributions of the utterances according to their HNR
estimates and to their voice quality - C : creaky, F : falsetto, LS :
loud to shouting, M : modal, R : rough, S : soft, T : tense, W : al-
most whispering. The window length is 46 ms.

underestimations of RHNR, for which we could not define
any rule.

About the overall RHNR estimations, many observations
are the same for the three methods and the two window
lengths (though increasing this involves a decrease of the
HNR estimate). Observations are summarized in Fig. 3.

The first observation is about rough, creaky, or whisper-
ing voices utterances : all of them have a low estimated
RHNR which confirms observations of [1], [2], [3].

A large RHNR was estimated for utterances with a high
pitch (about 500 Hz), especially for method C. The high
pitch and the high open quotient associated to falsetto voices
[14] make their waveform less influenced by non-harmonic
fluctuations usually due to the first formant. This gives these
signals a strong harmonic character, so a high RHNR.

There are some loud voices in the database, labelled ac-
cording to their degree of loudness. This classification can be
retrieved by sorting the RHNR. Moreover, most RHNR of
shouting voices are higher than RHNR of loud voices. (More
observations about loud voices are found in section 3.2.3).

On the other hand, almost-whispering voices are found
to have a low RHNR (except for method B with the 46-ms
window). But though all methods converge to the same re-
sult, this observation has to be taken with care because of the
few voiced frames detected in this kind of voice. Method A
estimates a very low RHNR for all soft voices, for reasons
we have already described. This is perceptually the most
logical result, though it diverges from methods B and C.

The estimated RHNR of the tense phonation is high.
This was expected, but it has to be taken carefully as we se-
lected only one tense voice in the database ; this also explains
the variations among the classifications of Fig. 3. (The same
carefullness has to be taken about the creaky voice).
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Figure 4. Confusion matrix of the results of the three methods ap-
plied on a database designed for loudness analysis.

3.2.2 Further tests with added white noise

As an additional test, we measured the HNR of the
same utterances in which we added white noise to the source
signal (with equal HNR for all utterances) through an in-
verse-filtering/noising/LP-synthesis algorithm. The result is
an increase of the estimated HNR, and the classification of
the utterances according to their RHNR is well preserved.
This shows the robustness of the methods to detect aspiration
noise in naturally connected speech.

3.2.3 Database designed for loudness measurements

In the context of studying voice dynamics variations, we
built a naturally connected speech database constituted of 10
French sentences pronounced three times (corresponding to
three loudness levels : calm, modal and loud) by two male
speakers and recorded with two different microphones. This
makes a 120-utterances database (16-bit wav files sampled at
48 kHz). The average HNR of each utterance is measured
with the three methods (observation window is 42 ms with
methods A & B, 64 ms with method C ; time shift between
two successive windows is 10 ms). Then the utterances are
classified according to their HNR; the 1% third of them is
classified as "calm voice", the 2™ third as "modal voice", and
the 3™ third as "loud voice". A confusion matrix is presented
on Fig. 4, showing that both methods A & B seem appropri-
ate to classify the utterances according to their loudness, but
that method C is not suitable for that purpose.

4. CONCLUSION

The main aim of this study was to compare three methods to
estimate the HNR of voiced speech. As we do not have any
reference method, the consistency of the results of the three
coupled to the relevance of the estimations would be an indi-
cation of their reliability for voice quality classification tasks.
For this comparison a first voice quality database is used.
The three methods provide similar results, especially method
B. Method A is the most divergent, but these divergences can
be anticipated, in opposition to underestimations of method
C. Then, a separate analysis of the results of the three meth-
ods leads us to the same conclusion : they are all good
indicators of the presence of noise in voiced speech, though
their accuracy is rather limited. This means that we can en-
visage applications like classification of the utterances ac-
cording to their voice quality (sorting them according to only
one criterion like loudness as it was done on the second data-

rion like loudness as it was done on the second database, or
distinguishing creaky voices from modal ones, etc.), but we
could not imagine a HNR measurement accurate to the tenth
of dB for example. Moreover, establishing HNR classifica-
tion scales like the ones of Fig. 3 should take into account
the remarks of section 3.2.1 (high sensitiveness of method A
for soft voices, high HNR estimate for falsetto voices, etc.).
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