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ABSTRACT

In this article we present new results on the classification of
the neonatal ”White Matter Damage” brain disease. One of
the common diagnostic methods nowadays used in clinical
practice is the visual inspection of Ultrasound images of the
neonatal brain. Given the poor image quality of Ultrasound
images and the different machine settings used in practice,
this diagnosis highly depends on the interpretation of the
medical doctor and is subjective to some degree. In this paper
we investigate if the texture present in the images could have
prognostic implications for detecting affected tissue, and thus
help us in creating semi-automatic tools to assist the experts.
We try not to compensate for the machine settings as was
done in former experiments because this compensation is of-
ten machine dependent and quite tricky. We have to guess
up to some degree what goes on inside of the Ultrasound
machine. As a main contribution will show it is possible to
get very high classification rates without this preprocessing
which is a great step forward in the quantitative analysis of
the images.

1. INTRODUCTION

The aim of this research is to assist medical doctors in mak-
ing a better diagnosis of the White Matter Damage (WMD)
brain disease, which occurs on 20 to 50 percent of newborns
with a very low birth weight (< 1500 g) [1]. We do this by
developing semi-automatic texture analysis tools as well for
the classification as for the segmentation of the affected parts
of the brain. In what follows we will only focus on the clas-
sification of affected and non affected tissue.
When capturing an Ultrasound image the medical expert se-
lects various scanner settings, such as the Gain (the amplifi-
cation of the received signal), the Power (the amplitude of the
emitted waves) and Time Gain Compensation (using differ-
ent levels of amplification for signals received from different
depths), . . . as to optimize the image on display. These set-
tings differ from patient to patient and from expert to expert
and influence the grey values displayed, see Fig. 2. Since we
want to compare images quantitatively with respect to texture
statistics directly computed from the grey values, it might be
useful to normalize the images first so that they are indepen-
dent of the scanner settings.

In the past, a compensation algorithm that constructs
such a standard image was developed [2]. This machine
model as we could call it makes some assumptions on the
way the real Ultrasound machine forms the images, see
Fig. 3. Here for, experimental data obtained from images
with different parameter settings was needed. Although the
framework fits its purpose well, it is machine dependent and
thus not applicable to all images. That‘s why it would be

Figure 1: Symmetrical flares (affected tissue) in the ultra-
sound image (coronal cross-section), manually delineated by
an expert. The ROI in which texture features are calculated
is also shown.

Figure 2: left image: image of a hardware phantom contain-
ing 3 cilinders captured with Gain = 4 db, right image: same
hardware fanthom captured with Gain = 0 db

nice to eliminate this step and try to work on the raw, non-
compensated images, trying to find tissue texture features
that are insensitive to all and different machine settings.
In [3] was shown that it was possible to detect affected tis-
sue by using the appropriate features but that the classifica-
tion is highly dependent on the compensation algorithm used.
We should comment though that the images used for this re-
search came from a small data set.
Since this former experiment we have received a bigger data
set from a different, more modern, Ultrasound machine. This
makes further experiments and statistical validation possible.
The paper is organized as follows: In the next section the
new experimental setup is described. Section 3 explains the
used feature extraction methods. Section 4 reviews the tech-
nique used to reduce and classify the features. The results are
discussed in section 5, followed by a conclusion in section 6.

2. EXPERIMENTAL SETUP

In [3] only 35 images, 21 affected and 14 non affected ones,
a mixture of coronal and saggital sections, captured by an Ul-



Figure 3: overview of Ultrasound machine model used in [2].

tramark Ultrasound machine, were taken into account. Given
the small number of samples, multiple Regions of Interest
(ROI), square regions in which the texture features are calcu-
lated - see Fig. 1, were selected per image. In that way not
all samples were statistically independent. Now our new data
set consists of 60 images, 30 affected and 30 non affected im-
ages, again a mixture of coronal and saggital sections, cap-
tured on an Acuson Sequoia 512 Ultrasound machine. Im-
portant to mention is that the images were taken by the same
medical doctor as the first ones and no ROI had to be selected
double, implying better generalization properties.
Yet some drawbacks still remain. As mentioned in the intro-
duction the compensation algorithm as it was developed is
not machine independent, that‘s why we do not (want to) use
it on the new data set. Further more the angle of incidence
of the ultrasound waves varies over the images. On some
images the ventricle of the brain is clearly visible, while on
other images we just see the tissue in front of it. This could be
disadvantageous because the observed texture may depend
on this angle of incidence (this is still investigated at the mo-
ment). On the other hand, mixing the angles of incidence
and even stages of the disease makes the system more useful,
because a bigger variety of images can be used as input.

3. FEATURE EXTRACTION

Here 5 texture feature sets were computed from the manually
chosen ROI. These features describe the spatial interrelation-
ships, arrangement of the image pixels, and are commonly
used in many medical pattern recognition tasks [4],[5]. As
you will see we choose to work only on texture features ex-
tracted from the image domain. We could also have com-
puted Gabor or Wavelet based features for instance, though
since the application should run in real time, these techniques
are more complicated and less suitable in clinical practice. If
the results we obtain with the simpler techniques should not
perform well enough we can still incorporate those.

A) Gray Level Co-occurrence Features. Haralicks’ co-
occurrence matrix [6] is intuitively a 2-dimensional his-
togram of the grey values of pixel pairs located at a prede-
fined distance d under a specific angle q in the intensity im-
age. In our case we made the matrix independent of q by
averaging out over 8 predefined angles Q = { 2kp

8 |k = 1..8}.
Let I be an M × N (intensity) image, 4x = d cosq and
4y = d sinq , then the entry on position (i, j) in the matrix

is given by

Pd(i, j) =
1
R

M−4x

å
m=4x

N−4y

å
n=4y

å
q∈Q

d ( f (m,n) = i

∧ f (m+4x,n+4y) = j),

with R = åM−4x
m=4x åN−4y

n=4y åq∈Q d ((m,n) ∈ I) is a normaliza-
tion factor, d (x) the Kronecker delta function, and f (m,n)
the grey value of pixel (m,n). From this matrix multiple first
and second order parameters were calculated:
1) Mean gray level 2) Variance of gray level 3) SNR 4) An-
gular second moment 5) Contrast 6) Correlation 7) Sum of
squares: variance 8) Inverse difference moment 9) Entropy
10) SNR 11) Kappa 12) Co-occurrence mean

B) Sum and Difference Histograms. Unser [7] developed
a technique to extract features from the histograms of both
sums and differences between pairs of grey values separated
by a distance d in a direction q , as a quicker alternative to the
co-occurrence matrix. Let y1 and y2 denote 2 pixels separate
by the distance vector d = (d1,d2):

{

y1 = yk,l
y2 = yk+d1,l+d2 ,

then the sum and difference histograms are calculated from
the sums sk,l and differences dk,l ,

{

sk,l = yk,l + yk+d1,l+d2
dk,l = yk,l − yk+d1,l+d2

the sums sk,l take on values in the interval [0,2G], the differ-
ences in the interval [−G,G], G denoting the maximum grey
value in the image. The sum PS(i) and difference histogram
PD(i) are then defined as:

Ps(i) = hs(i)/N; (i = 0, . . . ,2G)
Pd( j) = hd( j)/N; ( j = −G, . . . ,G)

with







hs(i;d1,d2) = hs(i) = #{(k, l) ∈ ROI,sk,l = i}
hd( j;d1,d2) = hd( j) = #{(k, l) ∈ ROI,dk,l = j}
N = å2G

i=0 hs(i) = åG
j=−G hd( j)

Concerning the choice of q , the conclusions made in A) stay
valid. The four extracted features are: 1) Mean 2) Angular
second moment 3) Contrast/Variance 4) Entropy.

C) Statistical Features. Amelung developed a system
AST [8] to compute features derived from the grey level and
gradient histograms. He defines the 2 gradient histograms as
the image histograms after convolution with the Sobel filter
masks. Each histogram is used to compute 6 features:
1) Mean 2) Variance 3) Third moment 4) Fourth moment 5)
Angular second moment 6) Entropy.

D) Run length Matrix. This method assumes lengths of
runs in different directions q can serve as a texture descrip-
tion. A ‘run’ is a set of pixels of constant intensity on a line,
under a given orientation. The run length matrix is obtained
by counting the number of runs of a given length for each
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Figure 4: The classification error rate in function of the win-
dow size of the square ROI

grey level. Let Pq denote the run length matrix for an angle
q , then:

Pq (g,d) = ag,d

Where ag,d stands for the number of runs of connected pixels
of length d in the direction of q all of which have the grey
value g. Before computing the run length matrix, the im-
ages were sent through a low pass filter to reduce the noise
and the grey levels were coarsely quantized to get sufficiently
high run lengths. Best results were obtained by reducing to
8 gray levels using histogram equalization. Concerning the
choice of q , the conclusions made in A) again stay valid. 11
features are then extracted [9].
1) Short run emphasis 2) Long run emphasis 3) Gray level
distribution 4) Run length distribution 5) Run percentage 6)
Low gray level emphasis 7) High gray level emphasis 8)
Long run high gray level emphasis 9) Long run low gray
level emphasis 10) Short run high gray level emphasis 11)
Short run low gray level emphasis.

E) Laws’ Texture Energy Measures. Laws’ texture mea-
sures are computed by first applying small convolution ker-
nels to the image, and then combining statistics (e.g. energy)
of the resulting images to extract texture features. The 2-D
convolution kernels typically used for texture discrimination
are generated from the following set of five one-dimensional
convolution kernels of length five:

L = (1,4,6,4,1)

E = (−1,−2,0,2,1)

S = (−1,0,2,0,−1)

W = (−1,2,0,−2,1)

R = (1,−4,6,−4,1)

where L performs local averaging, E is an edge detector, S
detects spots and the W and R vectors act as wave detec-
tors. From these one-dimensional convolution kernels, we
can generate 25 different two-dimensional convolution ker-
nels by convolving a vertical 1-D kernel with a horizontal
1-D kernel. We used the texture energy of the filtered images
to extract 14 texture features [10].

4. CLASSIFICATION

Computing all these features and combining them we end up
with huge numbers (> 150 features). Given the number of
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Figure 5: The classification error in function of the co-
occurrence distance d for window size 55×55 pixels

samples N = 60 we used a maximum of l = 3 features so
that the ratio N

l = 20 is sufficiently high. This to overcome
the curse of dimensionality and in order to have good gener-
alization properties this ratio should at least be 20 according
to [11].
We did not reduce our feature space by any PCA search but
by a simple, though computationally extensive Sequential
Forward Search up to 3 features. Following the feature space
reduction, the (hard) classification of the brain tissue into af-
fected or non affected was done using a MAP Bayesian clas-
sifier with (multi)normal class distributions. Because of the
size of the data set we used the same data for both purposes
applying the leave-one-out principle. The error rate of the
classification is computed as:

Error rate [%] = 100×
# misclassified samples

# samples

5. DISCUSSION

The aim of this study was to compare different texture fea-
ture sets. The ability of discriminating between affected and
non affected tissue without having to compensate the images
first was the most important issue.
Table 1 shows us that all but one of the texture feature extrac-
tors perform significantly better on the new data set, without
compensation. In the case of the co-occurrence matrix we
even achieve a perfect classification, which was never possi-
ble in the former data set even with compensation. This is a
very promising result for the application in medical practice.
As mentioned before, the bigger sample size (about doubled)
of the our new data set makes these results also more statis-
tically relevant then the former ones. A simple t-test suffices
to prove this.
Since the co-occurrence features outperformed the others we
will now focus a bit more on them. We tested different win-
dow sizes for the ROI ranging from 5×5 up to 60×60 pix-
els. Fig. 4 shows that we reach a perfect classification for a
window size of 55× 55 pixels, this is also the window size
for which we obtain optimal results for the other techniques.
Thus we can conclude that for this particular problem this is
optimal. We also did some further experiments on the co-
occurrence distance d. We tested distances ranging from 1 to
20, which is the an upper bound to keep a significant amount
of entries in the matrix. Fig. 5 shows us that d = 1 gives



Lowest Error rate [%] New data set nc Former data set nc Former data set c
Co-occurrence matrix 0 9 3
Sum and Difference histograms 6.6 2 11
Statistical features 3.3 6 1
Run length matrix 0.5 17 16
Laws’ texture energy measures 25 29 29

Table 1: Comparison of the classification results with and without compensation algorithm obtained with each of the 6 tested
feature sets. As well with our new as with our old data set. nc = non-compensated, c = compensated
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Figure 6: Classification of the samples according to the co-
occurrence‘s Inverse Difference moment, Signal to Noise
Ratio and Co-occurrence mean

us the best results. Similar results are obtained for the Run
Length Matrix and Sum and Difference histograms, concern-
ing this distance.
As for which parameters actually led to the best classifica-
tion, we noticed that the Inverse Difference Moment, Co-
occurrence mean and the Signal to Noise ratio, came up as
best parameters, see Fig. 6.
Since the first two are related to the contrast present in the
image we might explain this by the fact that they are not
(as much) affected by the machine setting, since although
the power and gain may brighten or darken the overall im-
age, the contrast is less affected. Also, since we are more or
less looking at the same depth in each image, the time gain
compensation, which is the hardest to simulate, is of minor
importance here.

6. CONCLUSION

We found relevant means to classify affected from non af-
fected brain tissue without having to compensate for the ma-
chine settings first. 3 of the co-occurrence based feature seem
to be independent of the machine settings. With the compen-
sation already good results were obtained yet we have can
conclude now that the texture features we found, outperform
those in the former research.
Further validation is still necessary, for sure on two fields.
First of all, when new data sets become available, which
unfortunately takes time given the nature of the patients we
work on, we should try and separate the test and training set

even more. Secondly a more empirical model for the class
distributions in the Bayesian classifier has to be taken into
account.
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D17, 1995.

[9] M.M. Galloway, “Texture analysis using gray level run
lenghts,” Computer Graphics and Image Processing,
vol. 4, pp. 172–179, 1975.

[10] K. Laws, “Rapid texture identification,” in Proceedings
of SPIE Image Processing for Missile Guidance, 1980,
vol. 238, pp. 376–380.

[11] A. Jain and M. Tuceryan, Handbook of Pattern Recog-
nition and Computer Vision, chapter Texture analysis,
World Scientific Publishing Co., 1998.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Wilfried Philips
	Bruno Huysmans
	Ewout Vansteenkiste



